Whakaoti mō x (complex solution)
x\in \mathrm{C}
Whakaoti mō x
x\in \mathrm{R}
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-5-\left(1-x\right)=2\left(x-1\right)-4\left(1-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-1.
5x-5-1-\left(-x\right)=2\left(x-1\right)-4\left(1-x\right)
Hei kimi i te tauaro o 1-x, kimihia te tauaro o ia taurangi.
5x-5-1+x=2\left(x-1\right)-4\left(1-x\right)
Ko te tauaro o -x ko x.
5x-6+x=2\left(x-1\right)-4\left(1-x\right)
Tangohia te 1 i te -5, ka -6.
6x-6=2\left(x-1\right)-4\left(1-x\right)
Pahekotia te 5x me x, ka 6x.
6x-6=2x-2-4\left(1-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1.
6x-6=2x-2-4+4x
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 1-x.
6x-6=2x-6+4x
Tangohia te 4 i te -2, ka -6.
6x-6=6x-6
Pahekotia te 2x me 4x, ka 6x.
6x-6-6x=-6
Tangohia te 6x mai i ngā taha e rua.
-6=-6
Pahekotia te 6x me -6x, ka 0.
\text{true}
Whakatauritea te -6 me te -6.
x\in \mathrm{C}
He pono tēnei mō tētahi x ahakoa.
5x-5-\left(1-x\right)=2\left(x-1\right)-4\left(1-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-1.
5x-5-1-\left(-x\right)=2\left(x-1\right)-4\left(1-x\right)
Hei kimi i te tauaro o 1-x, kimihia te tauaro o ia taurangi.
5x-5-1+x=2\left(x-1\right)-4\left(1-x\right)
Ko te tauaro o -x ko x.
5x-6+x=2\left(x-1\right)-4\left(1-x\right)
Tangohia te 1 i te -5, ka -6.
6x-6=2\left(x-1\right)-4\left(1-x\right)
Pahekotia te 5x me x, ka 6x.
6x-6=2x-2-4\left(1-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1.
6x-6=2x-2-4+4x
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 1-x.
6x-6=2x-6+4x
Tangohia te 4 i te -2, ka -6.
6x-6=6x-6
Pahekotia te 2x me 4x, ka 6x.
6x-6-6x=-6
Tangohia te 6x mai i ngā taha e rua.
-6=-6
Pahekotia te 6x me -6x, ka 0.
\text{true}
Whakatauritea te -6 me te -6.
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}