Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-5+6=13x-\left(x-8\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-1.
5x+1=13x-\left(x-8\right)
Tāpirihia te -5 ki te 6, ka 1.
5x+1=13x-x-\left(-8\right)
Hei kimi i te tauaro o x-8, kimihia te tauaro o ia taurangi.
5x+1=13x-x+8
Ko te tauaro o -8 ko 8.
5x+1=12x+8
Pahekotia te 13x me -x, ka 12x.
5x+1-12x=8
Tangohia te 12x mai i ngā taha e rua.
-7x+1=8
Pahekotia te 5x me -12x, ka -7x.
-7x=8-1
Tangohia te 1 mai i ngā taha e rua.
-7x=7
Tangohia te 1 i te 8, ka 7.
x=\frac{7}{-7}
Whakawehea ngā taha e rua ki te -7.
x=-1
Whakawehea te 7 ki te -7, kia riro ko -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}