Whakaoti mō w
w=-4
Tohaina
Kua tāruatia ki te papatopenga
5w+10+w=3\left(w-1\right)+1
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te w+2.
6w+10=3\left(w-1\right)+1
Pahekotia te 5w me w, ka 6w.
6w+10=3w-3+1
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te w-1.
6w+10=3w-2
Tāpirihia te -3 ki te 1, ka -2.
6w+10-3w=-2
Tangohia te 3w mai i ngā taha e rua.
3w+10=-2
Pahekotia te 6w me -3w, ka 3w.
3w=-2-10
Tangohia te 10 mai i ngā taha e rua.
3w=-12
Tangohia te 10 i te -2, ka -12.
w=\frac{-12}{3}
Whakawehea ngā taha e rua ki te 3.
w=-4
Whakawehea te -12 ki te 3, kia riro ko -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}