Whakaoti mō w (complex solution)
w\in \mathrm{C}
Whakaoti mō w
w\in \mathrm{R}
Tohaina
Kua tāruatia ki te papatopenga
5w+5-w=4\left(w-1\right)+9
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te w+1.
4w+5=4\left(w-1\right)+9
Pahekotia te 5w me -w, ka 4w.
4w+5=4w-4+9
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te w-1.
4w+5=4w+5
Tāpirihia te -4 ki te 9, ka 5.
4w+5-4w=5
Tangohia te 4w mai i ngā taha e rua.
5=5
Pahekotia te 4w me -4w, ka 0.
\text{true}
Whakatauritea te 5 me te 5.
w\in \mathrm{C}
He pono tēnei mō tētahi w ahakoa.
5w+5-w=4\left(w-1\right)+9
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te w+1.
4w+5=4\left(w-1\right)+9
Pahekotia te 5w me -w, ka 4w.
4w+5=4w-4+9
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te w-1.
4w+5=4w+5
Tāpirihia te -4 ki te 9, ka 5.
4w+5-4w=5
Tangohia te 4w mai i ngā taha e rua.
5=5
Pahekotia te 4w me -4w, ka 0.
\text{true}
Whakatauritea te 5 me te 5.
w\in \mathrm{R}
He pono tēnei mō tētahi w ahakoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}