Whakaoti mō t
t = \frac{\sqrt{89} + 5}{2} \approx 7.216990566
t=\frac{5-\sqrt{89}}{2}\approx -2.216990566
Tohaina
Kua tāruatia ki te papatopenga
t^{2}-5t-16=0
Whakawehea ngā taha e rua ki te 5. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-16\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -5 mō b, me -16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-5\right)±\sqrt{25-4\left(-16\right)}}{2}
Pūrua -5.
t=\frac{-\left(-5\right)±\sqrt{25+64}}{2}
Whakareatia -4 ki te -16.
t=\frac{-\left(-5\right)±\sqrt{89}}{2}
Tāpiri 25 ki te 64.
t=\frac{5±\sqrt{89}}{2}
Ko te tauaro o -5 ko 5.
t=\frac{\sqrt{89}+5}{2}
Nā, me whakaoti te whārite t=\frac{5±\sqrt{89}}{2} ina he tāpiri te ±. Tāpiri 5 ki te \sqrt{89}.
t=\frac{5-\sqrt{89}}{2}
Nā, me whakaoti te whārite t=\frac{5±\sqrt{89}}{2} ina he tango te ±. Tango \sqrt{89} mai i 5.
t=\frac{\sqrt{89}+5}{2} t=\frac{5-\sqrt{89}}{2}
Kua oti te whārite te whakatau.
t^{2}-5t-16=0
Whakawehea ngā taha e rua ki te 5. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
t^{2}-5t=16
Me tāpiri te 16 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
t^{2}-5t+\left(-\frac{5}{2}\right)^{2}=16+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-5t+\frac{25}{4}=16+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-5t+\frac{25}{4}=\frac{89}{4}
Tāpiri 16 ki te \frac{25}{4}.
\left(t-\frac{5}{2}\right)^{2}=\frac{89}{4}
Tauwehea t^{2}-5t+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{2}\right)^{2}}=\sqrt{\frac{89}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{5}{2}=\frac{\sqrt{89}}{2} t-\frac{5}{2}=-\frac{\sqrt{89}}{2}
Whakarūnātia.
t=\frac{\sqrt{89}+5}{2} t=\frac{5-\sqrt{89}}{2}
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}