Whakaoti mō y
y = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
25-15y=13-7y
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 5-3y.
25-15y+7y=13
Me tāpiri te 7y ki ngā taha e rua.
25-8y=13
Pahekotia te -15y me 7y, ka -8y.
-8y=13-25
Tangohia te 25 mai i ngā taha e rua.
-8y=-12
Tangohia te 25 i te 13, ka -12.
y=\frac{-12}{-8}
Whakawehea ngā taha e rua ki te -8.
y=\frac{3}{2}
Whakahekea te hautanga \frac{-12}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}