Aromātai
5
Tauwehe
5
Tohaina
Kua tāruatia ki te papatopenga
5\left(-1\right)^{2}+3\left(5-1\right)-2\left(1+2\right)^{2}\times 2+2\times 3\times 4
Tangohia te 5 i te 4, ka -1.
5\times 1+3\left(5-1\right)-2\left(1+2\right)^{2}\times 2+2\times 3\times 4
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
5+3\left(5-1\right)-2\left(1+2\right)^{2}\times 2+2\times 3\times 4
Whakareatia te 5 ki te 1, ka 5.
5+3\times 4-2\left(1+2\right)^{2}\times 2+2\times 3\times 4
Tangohia te 1 i te 5, ka 4.
5+12-2\left(1+2\right)^{2}\times 2+2\times 3\times 4
Whakareatia te 3 ki te 4, ka 12.
17-2\left(1+2\right)^{2}\times 2+2\times 3\times 4
Tāpirihia te 5 ki te 12, ka 17.
17-2\times 3^{2}\times 2+2\times 3\times 4
Tāpirihia te 1 ki te 2, ka 3.
17-2\times 9\times 2+2\times 3\times 4
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
17-18\times 2+2\times 3\times 4
Whakareatia te 2 ki te 9, ka 18.
17-36+2\times 3\times 4
Whakareatia te 18 ki te 2, ka 36.
-19+2\times 3\times 4
Tangohia te 36 i te 17, ka -19.
-19+6\times 4
Whakareatia te 2 ki te 3, ka 6.
-19+24
Whakareatia te 6 ki te 4, ka 24.
5
Tāpirihia te -19 ki te 24, ka 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}