Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5\times 2x}{x+3}
Tuhia te 5\times \frac{2x}{x+3} hei hautanga kotahi.
\frac{10x}{x+3}
Whakareatia te 5 ki te 2, ka 10.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 2x}{x+3})
Tuhia te 5\times \frac{2x}{x+3} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10x}{x+3})
Whakareatia te 5 ki te 2, ka 10.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(10x^{1})-10x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}+3\right)\times 10x^{1-1}-10x^{1}x^{1-1}}{\left(x^{1}+3\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}+3\right)\times 10x^{0}-10x^{1}x^{0}}{\left(x^{1}+3\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}\times 10x^{0}+3\times 10x^{0}-10x^{1}x^{0}}{\left(x^{1}+3\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{10x^{1}+3\times 10x^{0}-10x^{1}}{\left(x^{1}+3\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{10x^{1}+30x^{0}-10x^{1}}{\left(x^{1}+3\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(10-10\right)x^{1}+30x^{0}}{\left(x^{1}+3\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{30x^{0}}{\left(x^{1}+3\right)^{2}}
Tango 10 mai i 10.
\frac{30x^{0}}{\left(x+3\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{30\times 1}{\left(x+3\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{30}{\left(x+3\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.