5 | [ ( \frac { 1 } { 2 } + \frac { 1 } { 3 } - \frac { 1 } { 4 } ) \cdot ( \frac { 1 } { 2 } - \frac { 1 } { 13 } ) + \frac { 1 } { 4 } : \frac { 1 } { 2 } ]
Aromātai
\frac{1165}{312}\approx 3.733974359
Tauwehe
\frac{5 \cdot 233}{2 ^ {3} \cdot 3 \cdot 13} = 3\frac{229}{312} = 3.733974358974359
Tohaina
Kua tāruatia ki te papatopenga
5|\left(\frac{3}{6}+\frac{2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
5|\left(\frac{3+2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{2}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
5|\left(\frac{5}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
Tāpirihia te 3 ki te 2, ka 5.
5|\left(\frac{10}{12}-\frac{3}{12}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri \frac{5}{6} me \frac{1}{4} ki te hautau me te tautūnga 12.
5|\frac{10-3}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
Tā te mea he rite te tauraro o \frac{10}{12} me \frac{3}{12}, me tango rāua mā te tango i ō raua taurunga.
5|\frac{7}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
Tangohia te 3 i te 10, ka 7.
5|\frac{7}{12}\left(\frac{13}{26}-\frac{2}{26}\right)+\frac{\frac{1}{4}}{\frac{1}{2}}|
Ko te maha noa iti rawa atu o 2 me 13 ko 26. Me tahuri \frac{1}{2} me \frac{1}{13} ki te hautau me te tautūnga 26.
5|\frac{7}{12}\times \frac{13-2}{26}+\frac{\frac{1}{4}}{\frac{1}{2}}|
Tā te mea he rite te tauraro o \frac{13}{26} me \frac{2}{26}, me tango rāua mā te tango i ō raua taurunga.
5|\frac{7}{12}\times \frac{11}{26}+\frac{\frac{1}{4}}{\frac{1}{2}}|
Tangohia te 2 i te 13, ka 11.
5|\frac{7\times 11}{12\times 26}+\frac{\frac{1}{4}}{\frac{1}{2}}|
Me whakarea te \frac{7}{12} ki te \frac{11}{26} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
5|\frac{77}{312}+\frac{\frac{1}{4}}{\frac{1}{2}}|
Mahia ngā whakarea i roto i te hautanga \frac{7\times 11}{12\times 26}.
5|\frac{77}{312}+\frac{1}{4}\times 2|
Whakawehe \frac{1}{4} ki te \frac{1}{2} mā te whakarea \frac{1}{4} ki te tau huripoki o \frac{1}{2}.
5|\frac{77}{312}+\frac{2}{4}|
Whakareatia te \frac{1}{4} ki te 2, ka \frac{2}{4}.
5|\frac{77}{312}+\frac{1}{2}|
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
5|\frac{77}{312}+\frac{156}{312}|
Ko te maha noa iti rawa atu o 312 me 2 ko 312. Me tahuri \frac{77}{312} me \frac{1}{2} ki te hautau me te tautūnga 312.
5|\frac{77+156}{312}|
Tā te mea he rite te tauraro o \frac{77}{312} me \frac{156}{312}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
5|\frac{233}{312}|
Tāpirihia te 77 ki te 156, ka 233.
5\times \frac{233}{312}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o \frac{233}{312} ko \frac{233}{312}.
\frac{5\times 233}{312}
Tuhia te 5\times \frac{233}{312} hei hautanga kotahi.
\frac{1165}{312}
Whakareatia te 5 ki te 233, ka 1165.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}