Whakaoti mō y
y=\frac{3\sqrt{195}}{5}+9\approx 17.378544026
y=-\frac{3\sqrt{195}}{5}+9\approx 0.621455974
Graph
Tohaina
Kua tāruatia ki te papatopenga
5y^{2}-90y+54=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 5\times 54}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -90 mō b, me 54 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-90\right)±\sqrt{8100-4\times 5\times 54}}{2\times 5}
Pūrua -90.
y=\frac{-\left(-90\right)±\sqrt{8100-20\times 54}}{2\times 5}
Whakareatia -4 ki te 5.
y=\frac{-\left(-90\right)±\sqrt{8100-1080}}{2\times 5}
Whakareatia -20 ki te 54.
y=\frac{-\left(-90\right)±\sqrt{7020}}{2\times 5}
Tāpiri 8100 ki te -1080.
y=\frac{-\left(-90\right)±6\sqrt{195}}{2\times 5}
Tuhia te pūtakerua o te 7020.
y=\frac{90±6\sqrt{195}}{2\times 5}
Ko te tauaro o -90 ko 90.
y=\frac{90±6\sqrt{195}}{10}
Whakareatia 2 ki te 5.
y=\frac{6\sqrt{195}+90}{10}
Nā, me whakaoti te whārite y=\frac{90±6\sqrt{195}}{10} ina he tāpiri te ±. Tāpiri 90 ki te 6\sqrt{195}.
y=\frac{3\sqrt{195}}{5}+9
Whakawehe 90+6\sqrt{195} ki te 10.
y=\frac{90-6\sqrt{195}}{10}
Nā, me whakaoti te whārite y=\frac{90±6\sqrt{195}}{10} ina he tango te ±. Tango 6\sqrt{195} mai i 90.
y=-\frac{3\sqrt{195}}{5}+9
Whakawehe 90-6\sqrt{195} ki te 10.
y=\frac{3\sqrt{195}}{5}+9 y=-\frac{3\sqrt{195}}{5}+9
Kua oti te whārite te whakatau.
5y^{2}-90y+54=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5y^{2}-90y+54-54=-54
Me tango 54 mai i ngā taha e rua o te whārite.
5y^{2}-90y=-54
Mā te tango i te 54 i a ia ake anō ka toe ko te 0.
\frac{5y^{2}-90y}{5}=-\frac{54}{5}
Whakawehea ngā taha e rua ki te 5.
y^{2}+\left(-\frac{90}{5}\right)y=-\frac{54}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
y^{2}-18y=-\frac{54}{5}
Whakawehe -90 ki te 5.
y^{2}-18y+\left(-9\right)^{2}=-\frac{54}{5}+\left(-9\right)^{2}
Whakawehea te -18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -9. Nā, tāpiria te pūrua o te -9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-18y+81=-\frac{54}{5}+81
Pūrua -9.
y^{2}-18y+81=\frac{351}{5}
Tāpiri -\frac{54}{5} ki te 81.
\left(y-9\right)^{2}=\frac{351}{5}
Tauwehea y^{2}-18y+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-9\right)^{2}}=\sqrt{\frac{351}{5}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-9=\frac{3\sqrt{195}}{5} y-9=-\frac{3\sqrt{195}}{5}
Whakarūnātia.
y=\frac{3\sqrt{195}}{5}+9 y=-\frac{3\sqrt{195}}{5}+9
Me tāpiri 9 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}