Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-6 ab=5\left(-8\right)=-40
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5x^{2}+ax+bx-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-40 2,-20 4,-10 5,-8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -40.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
Tātaihia te tapeke mō ia takirua.
a=-10 b=4
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(5x^{2}-10x\right)+\left(4x-8\right)
Tuhia anō te 5x^{2}-6x-8 hei \left(5x^{2}-10x\right)+\left(4x-8\right).
5x\left(x-2\right)+4\left(x-2\right)
Tauwehea te 5x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-2\right)\left(5x+4\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-\frac{4}{5}
Hei kimi otinga whārite, me whakaoti te x-2=0 me te 5x+4=0.
5x^{2}-6x-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 5\left(-8\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -6 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 5\left(-8\right)}}{2\times 5}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-20\left(-8\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-6\right)±\sqrt{36+160}}{2\times 5}
Whakareatia -20 ki te -8.
x=\frac{-\left(-6\right)±\sqrt{196}}{2\times 5}
Tāpiri 36 ki te 160.
x=\frac{-\left(-6\right)±14}{2\times 5}
Tuhia te pūtakerua o te 196.
x=\frac{6±14}{2\times 5}
Ko te tauaro o -6 ko 6.
x=\frac{6±14}{10}
Whakareatia 2 ki te 5.
x=\frac{20}{10}
Nā, me whakaoti te whārite x=\frac{6±14}{10} ina he tāpiri te ±. Tāpiri 6 ki te 14.
x=2
Whakawehe 20 ki te 10.
x=-\frac{8}{10}
Nā, me whakaoti te whārite x=\frac{6±14}{10} ina he tango te ±. Tango 14 mai i 6.
x=-\frac{4}{5}
Whakahekea te hautanga \frac{-8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=2 x=-\frac{4}{5}
Kua oti te whārite te whakatau.
5x^{2}-6x-8=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-6x-8-\left(-8\right)=-\left(-8\right)
Me tāpiri 8 ki ngā taha e rua o te whārite.
5x^{2}-6x=-\left(-8\right)
Mā te tango i te -8 i a ia ake anō ka toe ko te 0.
5x^{2}-6x=8
Tango -8 mai i 0.
\frac{5x^{2}-6x}{5}=\frac{8}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}-\frac{6}{5}x=\frac{8}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-\frac{6}{5}x+\left(-\frac{3}{5}\right)^{2}=\frac{8}{5}+\left(-\frac{3}{5}\right)^{2}
Whakawehea te -\frac{6}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{5}. Nā, tāpiria te pūrua o te -\frac{3}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{8}{5}+\frac{9}{25}
Pūruatia -\frac{3}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{49}{25}
Tāpiri \frac{8}{5} ki te \frac{9}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{5}\right)^{2}=\frac{49}{25}
Tauwehea x^{2}-\frac{6}{5}x+\frac{9}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{5}\right)^{2}}=\sqrt{\frac{49}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{5}=\frac{7}{5} x-\frac{3}{5}=-\frac{7}{5}
Whakarūnātia.
x=2 x=-\frac{4}{5}
Me tāpiri \frac{3}{5} ki ngā taha e rua o te whārite.