Whakaoti mō x
x = \frac{2 \sqrt{119} + 24}{5} \approx 9.163484846
x=\frac{24-2\sqrt{119}}{5}\approx 0.436515154
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}-48x+20=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 5\times 20}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -48 mō b, me 20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-48\right)±\sqrt{2304-4\times 5\times 20}}{2\times 5}
Pūrua -48.
x=\frac{-\left(-48\right)±\sqrt{2304-20\times 20}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-48\right)±\sqrt{2304-400}}{2\times 5}
Whakareatia -20 ki te 20.
x=\frac{-\left(-48\right)±\sqrt{1904}}{2\times 5}
Tāpiri 2304 ki te -400.
x=\frac{-\left(-48\right)±4\sqrt{119}}{2\times 5}
Tuhia te pūtakerua o te 1904.
x=\frac{48±4\sqrt{119}}{2\times 5}
Ko te tauaro o -48 ko 48.
x=\frac{48±4\sqrt{119}}{10}
Whakareatia 2 ki te 5.
x=\frac{4\sqrt{119}+48}{10}
Nā, me whakaoti te whārite x=\frac{48±4\sqrt{119}}{10} ina he tāpiri te ±. Tāpiri 48 ki te 4\sqrt{119}.
x=\frac{2\sqrt{119}+24}{5}
Whakawehe 48+4\sqrt{119} ki te 10.
x=\frac{48-4\sqrt{119}}{10}
Nā, me whakaoti te whārite x=\frac{48±4\sqrt{119}}{10} ina he tango te ±. Tango 4\sqrt{119} mai i 48.
x=\frac{24-2\sqrt{119}}{5}
Whakawehe 48-4\sqrt{119} ki te 10.
x=\frac{2\sqrt{119}+24}{5} x=\frac{24-2\sqrt{119}}{5}
Kua oti te whārite te whakatau.
5x^{2}-48x+20=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-48x+20-20=-20
Me tango 20 mai i ngā taha e rua o te whārite.
5x^{2}-48x=-20
Mā te tango i te 20 i a ia ake anō ka toe ko te 0.
\frac{5x^{2}-48x}{5}=-\frac{20}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}-\frac{48}{5}x=-\frac{20}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-\frac{48}{5}x=-4
Whakawehe -20 ki te 5.
x^{2}-\frac{48}{5}x+\left(-\frac{24}{5}\right)^{2}=-4+\left(-\frac{24}{5}\right)^{2}
Whakawehea te -\frac{48}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{24}{5}. Nā, tāpiria te pūrua o te -\frac{24}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{48}{5}x+\frac{576}{25}=-4+\frac{576}{25}
Pūruatia -\frac{24}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{48}{5}x+\frac{576}{25}=\frac{476}{25}
Tāpiri -4 ki te \frac{576}{25}.
\left(x-\frac{24}{5}\right)^{2}=\frac{476}{25}
Tauwehea x^{2}-\frac{48}{5}x+\frac{576}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{24}{5}\right)^{2}}=\sqrt{\frac{476}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{24}{5}=\frac{2\sqrt{119}}{5} x-\frac{24}{5}=-\frac{2\sqrt{119}}{5}
Whakarūnātia.
x=\frac{2\sqrt{119}+24}{5} x=\frac{24-2\sqrt{119}}{5}
Me tāpiri \frac{24}{5} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}