Whakaoti mō x
x=5\sqrt{2}+5\approx 12.071067812
x=5-5\sqrt{2}\approx -2.071067812
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}-43x-125-7x=0
Tangohia te 7x mai i ngā taha e rua.
5x^{2}-50x-125=0
Pahekotia te -43x me -7x, ka -50x.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 5\left(-125\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -50 mō b, me -125 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 5\left(-125\right)}}{2\times 5}
Pūrua -50.
x=\frac{-\left(-50\right)±\sqrt{2500-20\left(-125\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-50\right)±\sqrt{2500+2500}}{2\times 5}
Whakareatia -20 ki te -125.
x=\frac{-\left(-50\right)±\sqrt{5000}}{2\times 5}
Tāpiri 2500 ki te 2500.
x=\frac{-\left(-50\right)±50\sqrt{2}}{2\times 5}
Tuhia te pūtakerua o te 5000.
x=\frac{50±50\sqrt{2}}{2\times 5}
Ko te tauaro o -50 ko 50.
x=\frac{50±50\sqrt{2}}{10}
Whakareatia 2 ki te 5.
x=\frac{50\sqrt{2}+50}{10}
Nā, me whakaoti te whārite x=\frac{50±50\sqrt{2}}{10} ina he tāpiri te ±. Tāpiri 50 ki te 50\sqrt{2}.
x=5\sqrt{2}+5
Whakawehe 50+50\sqrt{2} ki te 10.
x=\frac{50-50\sqrt{2}}{10}
Nā, me whakaoti te whārite x=\frac{50±50\sqrt{2}}{10} ina he tango te ±. Tango 50\sqrt{2} mai i 50.
x=5-5\sqrt{2}
Whakawehe 50-50\sqrt{2} ki te 10.
x=5\sqrt{2}+5 x=5-5\sqrt{2}
Kua oti te whārite te whakatau.
5x^{2}-43x-125-7x=0
Tangohia te 7x mai i ngā taha e rua.
5x^{2}-50x-125=0
Pahekotia te -43x me -7x, ka -50x.
5x^{2}-50x=125
Me tāpiri te 125 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{5x^{2}-50x}{5}=\frac{125}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{50}{5}\right)x=\frac{125}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-10x=\frac{125}{5}
Whakawehe -50 ki te 5.
x^{2}-10x=25
Whakawehe 125 ki te 5.
x^{2}-10x+\left(-5\right)^{2}=25+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-10x+25=25+25
Pūrua -5.
x^{2}-10x+25=50
Tāpiri 25 ki te 25.
\left(x-5\right)^{2}=50
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{50}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=5\sqrt{2} x-5=-5\sqrt{2}
Whakarūnātia.
x=5\sqrt{2}+5 x=5-5\sqrt{2}
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}