Tauwehe
\left(x-7\right)\left(5x-6\right)
Aromātai
\left(x-7\right)\left(5x-6\right)
Graph
Pātaitai
Polynomial
5 { x }^{ 2 } -41x+42
Tohaina
Kua tāruatia ki te papatopenga
a+b=-41 ab=5\times 42=210
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 5x^{2}+ax+bx+42. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-210 -2,-105 -3,-70 -5,-42 -6,-35 -7,-30 -10,-21 -14,-15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 210.
-1-210=-211 -2-105=-107 -3-70=-73 -5-42=-47 -6-35=-41 -7-30=-37 -10-21=-31 -14-15=-29
Tātaihia te tapeke mō ia takirua.
a=-35 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -41.
\left(5x^{2}-35x\right)+\left(-6x+42\right)
Tuhia anō te 5x^{2}-41x+42 hei \left(5x^{2}-35x\right)+\left(-6x+42\right).
5x\left(x-7\right)-6\left(x-7\right)
Tauwehea te 5x i te tuatahi me te -6 i te rōpū tuarua.
\left(x-7\right)\left(5x-6\right)
Whakatauwehea atu te kīanga pātahi x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
5x^{2}-41x+42=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-41\right)±\sqrt{\left(-41\right)^{2}-4\times 5\times 42}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-41\right)±\sqrt{1681-4\times 5\times 42}}{2\times 5}
Pūrua -41.
x=\frac{-\left(-41\right)±\sqrt{1681-20\times 42}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-41\right)±\sqrt{1681-840}}{2\times 5}
Whakareatia -20 ki te 42.
x=\frac{-\left(-41\right)±\sqrt{841}}{2\times 5}
Tāpiri 1681 ki te -840.
x=\frac{-\left(-41\right)±29}{2\times 5}
Tuhia te pūtakerua o te 841.
x=\frac{41±29}{2\times 5}
Ko te tauaro o -41 ko 41.
x=\frac{41±29}{10}
Whakareatia 2 ki te 5.
x=\frac{70}{10}
Nā, me whakaoti te whārite x=\frac{41±29}{10} ina he tāpiri te ±. Tāpiri 41 ki te 29.
x=7
Whakawehe 70 ki te 10.
x=\frac{12}{10}
Nā, me whakaoti te whārite x=\frac{41±29}{10} ina he tango te ±. Tango 29 mai i 41.
x=\frac{6}{5}
Whakahekea te hautanga \frac{12}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
5x^{2}-41x+42=5\left(x-7\right)\left(x-\frac{6}{5}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 7 mō te x_{1} me te \frac{6}{5} mō te x_{2}.
5x^{2}-41x+42=5\left(x-7\right)\times \frac{5x-6}{5}
Tango \frac{6}{5} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
5x^{2}-41x+42=\left(x-7\right)\left(5x-6\right)
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 5 me te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}