Whakaoti mō x
x = -\frac{6}{5} = -1\frac{1}{5} = -1.2
x=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-29 ab=5\left(-42\right)=-210
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5x^{2}+ax+bx-42. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-210 2,-105 3,-70 5,-42 6,-35 7,-30 10,-21 14,-15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -210.
1-210=-209 2-105=-103 3-70=-67 5-42=-37 6-35=-29 7-30=-23 10-21=-11 14-15=-1
Tātaihia te tapeke mō ia takirua.
a=-35 b=6
Ko te otinga te takirua ka hoatu i te tapeke -29.
\left(5x^{2}-35x\right)+\left(6x-42\right)
Tuhia anō te 5x^{2}-29x-42 hei \left(5x^{2}-35x\right)+\left(6x-42\right).
5x\left(x-7\right)+6\left(x-7\right)
Tauwehea te 5x i te tuatahi me te 6 i te rōpū tuarua.
\left(x-7\right)\left(5x+6\right)
Whakatauwehea atu te kīanga pātahi x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=7 x=-\frac{6}{5}
Hei kimi otinga whārite, me whakaoti te x-7=0 me te 5x+6=0.
5x^{2}-29x-42=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 5\left(-42\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -29 mō b, me -42 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-29\right)±\sqrt{841-4\times 5\left(-42\right)}}{2\times 5}
Pūrua -29.
x=\frac{-\left(-29\right)±\sqrt{841-20\left(-42\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-29\right)±\sqrt{841+840}}{2\times 5}
Whakareatia -20 ki te -42.
x=\frac{-\left(-29\right)±\sqrt{1681}}{2\times 5}
Tāpiri 841 ki te 840.
x=\frac{-\left(-29\right)±41}{2\times 5}
Tuhia te pūtakerua o te 1681.
x=\frac{29±41}{2\times 5}
Ko te tauaro o -29 ko 29.
x=\frac{29±41}{10}
Whakareatia 2 ki te 5.
x=\frac{70}{10}
Nā, me whakaoti te whārite x=\frac{29±41}{10} ina he tāpiri te ±. Tāpiri 29 ki te 41.
x=7
Whakawehe 70 ki te 10.
x=-\frac{12}{10}
Nā, me whakaoti te whārite x=\frac{29±41}{10} ina he tango te ±. Tango 41 mai i 29.
x=-\frac{6}{5}
Whakahekea te hautanga \frac{-12}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=7 x=-\frac{6}{5}
Kua oti te whārite te whakatau.
5x^{2}-29x-42=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-29x-42-\left(-42\right)=-\left(-42\right)
Me tāpiri 42 ki ngā taha e rua o te whārite.
5x^{2}-29x=-\left(-42\right)
Mā te tango i te -42 i a ia ake anō ka toe ko te 0.
5x^{2}-29x=42
Tango -42 mai i 0.
\frac{5x^{2}-29x}{5}=\frac{42}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}-\frac{29}{5}x=\frac{42}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-\frac{29}{5}x+\left(-\frac{29}{10}\right)^{2}=\frac{42}{5}+\left(-\frac{29}{10}\right)^{2}
Whakawehea te -\frac{29}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{29}{10}. Nā, tāpiria te pūrua o te -\frac{29}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{29}{5}x+\frac{841}{100}=\frac{42}{5}+\frac{841}{100}
Pūruatia -\frac{29}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{29}{5}x+\frac{841}{100}=\frac{1681}{100}
Tāpiri \frac{42}{5} ki te \frac{841}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{29}{10}\right)^{2}=\frac{1681}{100}
Tauwehea x^{2}-\frac{29}{5}x+\frac{841}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{29}{10}\right)^{2}}=\sqrt{\frac{1681}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{29}{10}=\frac{41}{10} x-\frac{29}{10}=-\frac{41}{10}
Whakarūnātia.
x=7 x=-\frac{6}{5}
Me tāpiri \frac{29}{10} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}