Whakaoti mō x
x=\frac{\sqrt{865}}{10}+\frac{5}{2}\approx 5.441088234
x=-\frac{\sqrt{865}}{10}+\frac{5}{2}\approx -0.441088234
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}-25x-12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 5\left(-12\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -25 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 5\left(-12\right)}}{2\times 5}
Pūrua -25.
x=\frac{-\left(-25\right)±\sqrt{625-20\left(-12\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-25\right)±\sqrt{625+240}}{2\times 5}
Whakareatia -20 ki te -12.
x=\frac{-\left(-25\right)±\sqrt{865}}{2\times 5}
Tāpiri 625 ki te 240.
x=\frac{25±\sqrt{865}}{2\times 5}
Ko te tauaro o -25 ko 25.
x=\frac{25±\sqrt{865}}{10}
Whakareatia 2 ki te 5.
x=\frac{\sqrt{865}+25}{10}
Nā, me whakaoti te whārite x=\frac{25±\sqrt{865}}{10} ina he tāpiri te ±. Tāpiri 25 ki te \sqrt{865}.
x=\frac{\sqrt{865}}{10}+\frac{5}{2}
Whakawehe 25+\sqrt{865} ki te 10.
x=\frac{25-\sqrt{865}}{10}
Nā, me whakaoti te whārite x=\frac{25±\sqrt{865}}{10} ina he tango te ±. Tango \sqrt{865} mai i 25.
x=-\frac{\sqrt{865}}{10}+\frac{5}{2}
Whakawehe 25-\sqrt{865} ki te 10.
x=\frac{\sqrt{865}}{10}+\frac{5}{2} x=-\frac{\sqrt{865}}{10}+\frac{5}{2}
Kua oti te whārite te whakatau.
5x^{2}-25x-12=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-25x-12-\left(-12\right)=-\left(-12\right)
Me tāpiri 12 ki ngā taha e rua o te whārite.
5x^{2}-25x=-\left(-12\right)
Mā te tango i te -12 i a ia ake anō ka toe ko te 0.
5x^{2}-25x=12
Tango -12 mai i 0.
\frac{5x^{2}-25x}{5}=\frac{12}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{25}{5}\right)x=\frac{12}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-5x=\frac{12}{5}
Whakawehe -25 ki te 5.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\frac{12}{5}+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=\frac{12}{5}+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-5x+\frac{25}{4}=\frac{173}{20}
Tāpiri \frac{12}{5} ki te \frac{25}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{2}\right)^{2}=\frac{173}{20}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{173}{20}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{\sqrt{865}}{10} x-\frac{5}{2}=-\frac{\sqrt{865}}{10}
Whakarūnātia.
x=\frac{\sqrt{865}}{10}+\frac{5}{2} x=-\frac{\sqrt{865}}{10}+\frac{5}{2}
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}