Whakaoti mō x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}-20x+20=\frac{20}{9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
5x^{2}-20x+20-\frac{20}{9}=\frac{20}{9}-\frac{20}{9}
Me tango \frac{20}{9} mai i ngā taha e rua o te whārite.
5x^{2}-20x+20-\frac{20}{9}=0
Mā te tango i te \frac{20}{9} i a ia ake anō ka toe ko te 0.
5x^{2}-20x+\frac{160}{9}=0
Tango \frac{20}{9} mai i 20.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 5\times \frac{160}{9}}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -20 mō b, me \frac{160}{9} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 5\times \frac{160}{9}}}{2\times 5}
Pūrua -20.
x=\frac{-\left(-20\right)±\sqrt{400-20\times \frac{160}{9}}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-20\right)±\sqrt{400-\frac{3200}{9}}}{2\times 5}
Whakareatia -20 ki te \frac{160}{9}.
x=\frac{-\left(-20\right)±\sqrt{\frac{400}{9}}}{2\times 5}
Tāpiri 400 ki te -\frac{3200}{9}.
x=\frac{-\left(-20\right)±\frac{20}{3}}{2\times 5}
Tuhia te pūtakerua o te \frac{400}{9}.
x=\frac{20±\frac{20}{3}}{2\times 5}
Ko te tauaro o -20 ko 20.
x=\frac{20±\frac{20}{3}}{10}
Whakareatia 2 ki te 5.
x=\frac{\frac{80}{3}}{10}
Nā, me whakaoti te whārite x=\frac{20±\frac{20}{3}}{10} ina he tāpiri te ±. Tāpiri 20 ki te \frac{20}{3}.
x=\frac{8}{3}
Whakawehe \frac{80}{3} ki te 10.
x=\frac{\frac{40}{3}}{10}
Nā, me whakaoti te whārite x=\frac{20±\frac{20}{3}}{10} ina he tango te ±. Tango \frac{20}{3} mai i 20.
x=\frac{4}{3}
Whakawehe \frac{40}{3} ki te 10.
x=\frac{8}{3} x=\frac{4}{3}
Kua oti te whārite te whakatau.
5x^{2}-20x+20=\frac{20}{9}
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-20x+20-20=\frac{20}{9}-20
Me tango 20 mai i ngā taha e rua o te whārite.
5x^{2}-20x=\frac{20}{9}-20
Mā te tango i te 20 i a ia ake anō ka toe ko te 0.
5x^{2}-20x=-\frac{160}{9}
Tango 20 mai i \frac{20}{9}.
\frac{5x^{2}-20x}{5}=-\frac{\frac{160}{9}}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{20}{5}\right)x=-\frac{\frac{160}{9}}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-4x=-\frac{\frac{160}{9}}{5}
Whakawehe -20 ki te 5.
x^{2}-4x=-\frac{32}{9}
Whakawehe -\frac{160}{9} ki te 5.
x^{2}-4x+\left(-2\right)^{2}=-\frac{32}{9}+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-\frac{32}{9}+4
Pūrua -2.
x^{2}-4x+4=\frac{4}{9}
Tāpiri -\frac{32}{9} ki te 4.
\left(x-2\right)^{2}=\frac{4}{9}
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{4}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=\frac{2}{3} x-2=-\frac{2}{3}
Whakarūnātia.
x=\frac{8}{3} x=\frac{4}{3}
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}