Whakaoti mō x
x=-0.3
x=0.8
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}-2.5x-1.2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2.5\right)±\sqrt{\left(-2.5\right)^{2}-4\times 5\left(-1.2\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -2.5 mō b, me -1.2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2.5\right)±\sqrt{6.25-4\times 5\left(-1.2\right)}}{2\times 5}
Pūruatia -2.5 mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-2.5\right)±\sqrt{6.25-20\left(-1.2\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-2.5\right)±\sqrt{6.25+24}}{2\times 5}
Whakareatia -20 ki te -1.2.
x=\frac{-\left(-2.5\right)±\sqrt{30.25}}{2\times 5}
Tāpiri 6.25 ki te 24.
x=\frac{-\left(-2.5\right)±\frac{11}{2}}{2\times 5}
Tuhia te pūtakerua o te 30.25.
x=\frac{2.5±\frac{11}{2}}{2\times 5}
Ko te tauaro o -2.5 ko 2.5.
x=\frac{2.5±\frac{11}{2}}{10}
Whakareatia 2 ki te 5.
x=\frac{8}{10}
Nā, me whakaoti te whārite x=\frac{2.5±\frac{11}{2}}{10} ina he tāpiri te ±. Tāpiri 2.5 ki te \frac{11}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{4}{5}
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{3}{10}
Nā, me whakaoti te whārite x=\frac{2.5±\frac{11}{2}}{10} ina he tango te ±. Tango \frac{11}{2} mai i 2.5 mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{4}{5} x=-\frac{3}{10}
Kua oti te whārite te whakatau.
5x^{2}-2.5x-1.2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-2.5x-1.2-\left(-1.2\right)=-\left(-1.2\right)
Me tāpiri 1.2 ki ngā taha e rua o te whārite.
5x^{2}-2.5x=-\left(-1.2\right)
Mā te tango i te -1.2 i a ia ake anō ka toe ko te 0.
5x^{2}-2.5x=1.2
Tango -1.2 mai i 0.
\frac{5x^{2}-2.5x}{5}=\frac{1.2}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{2.5}{5}\right)x=\frac{1.2}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-0.5x=\frac{1.2}{5}
Whakawehe -2.5 ki te 5.
x^{2}-0.5x=0.24
Whakawehe 1.2 ki te 5.
x^{2}-0.5x+\left(-0.25\right)^{2}=0.24+\left(-0.25\right)^{2}
Whakawehea te -0.5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -0.25. Nā, tāpiria te pūrua o te -0.25 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-0.5x+0.0625=0.24+0.0625
Pūruatia -0.25 mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-0.5x+0.0625=0.3025
Tāpiri 0.24 ki te 0.0625 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-0.25\right)^{2}=0.3025
Tauwehea x^{2}-0.5x+0.0625. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.25\right)^{2}}=\sqrt{0.3025}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-0.25=\frac{11}{20} x-0.25=-\frac{11}{20}
Whakarūnātia.
x=\frac{4}{5} x=-\frac{3}{10}
Me tāpiri 0.25 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}