Whakaoti mō x
x=5
x=-5
Graph
Pātaitai
Polynomial
5 { x }^{ 2 } -125=0
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-25=0
Whakawehea ngā taha e rua ki te 5.
\left(x-5\right)\left(x+5\right)=0
Whakaarohia te x^{2}-25. Tuhia anō te x^{2}-25 hei x^{2}-5^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=5 x=-5
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+5=0.
5x^{2}=125
Me tāpiri te 125 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{125}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}=25
Whakawehea te 125 ki te 5, kia riro ko 25.
x=5 x=-5
Tuhia te pūtakerua o ngā taha e rua o te whārite.
5x^{2}-125=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-125\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 0 mō b, me -125 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-125\right)}}{2\times 5}
Pūrua 0.
x=\frac{0±\sqrt{-20\left(-125\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{0±\sqrt{2500}}{2\times 5}
Whakareatia -20 ki te -125.
x=\frac{0±50}{2\times 5}
Tuhia te pūtakerua o te 2500.
x=\frac{0±50}{10}
Whakareatia 2 ki te 5.
x=5
Nā, me whakaoti te whārite x=\frac{0±50}{10} ina he tāpiri te ±. Whakawehe 50 ki te 10.
x=-5
Nā, me whakaoti te whārite x=\frac{0±50}{10} ina he tango te ±. Whakawehe -50 ki te 10.
x=5 x=-5
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}