Whakaoti mō x
x=-1
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-2x-3=0
Whakawehea ngā taha e rua ki te 5.
a+b=-2 ab=1\left(-3\right)=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-3x\right)+\left(x-3\right)
Tuhia anō te x^{2}-2x-3 hei \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Whakatauwehea atu x i te x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-1
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+1=0.
5x^{2}-10x-15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\left(-15\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -10 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5\left(-15\right)}}{2\times 5}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-20\left(-15\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-10\right)±\sqrt{100+300}}{2\times 5}
Whakareatia -20 ki te -15.
x=\frac{-\left(-10\right)±\sqrt{400}}{2\times 5}
Tāpiri 100 ki te 300.
x=\frac{-\left(-10\right)±20}{2\times 5}
Tuhia te pūtakerua o te 400.
x=\frac{10±20}{2\times 5}
Ko te tauaro o -10 ko 10.
x=\frac{10±20}{10}
Whakareatia 2 ki te 5.
x=\frac{30}{10}
Nā, me whakaoti te whārite x=\frac{10±20}{10} ina he tāpiri te ±. Tāpiri 10 ki te 20.
x=3
Whakawehe 30 ki te 10.
x=-\frac{10}{10}
Nā, me whakaoti te whārite x=\frac{10±20}{10} ina he tango te ±. Tango 20 mai i 10.
x=-1
Whakawehe -10 ki te 10.
x=3 x=-1
Kua oti te whārite te whakatau.
5x^{2}-10x-15=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-10x-15-\left(-15\right)=-\left(-15\right)
Me tāpiri 15 ki ngā taha e rua o te whārite.
5x^{2}-10x=-\left(-15\right)
Mā te tango i te -15 i a ia ake anō ka toe ko te 0.
5x^{2}-10x=15
Tango -15 mai i 0.
\frac{5x^{2}-10x}{5}=\frac{15}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{10}{5}\right)x=\frac{15}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-2x=\frac{15}{5}
Whakawehe -10 ki te 5.
x^{2}-2x=3
Whakawehe 15 ki te 5.
x^{2}-2x+1=3+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=4
Tāpiri 3 ki te 1.
\left(x-1\right)^{2}=4
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=2 x-1=-2
Whakarūnātia.
x=3 x=-1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}