Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=8 ab=5\times 3=15
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,15 3,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 15.
1+15=16 3+5=8
Tātaihia te tapeke mō ia takirua.
a=3 b=5
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(5x^{2}+3x\right)+\left(5x+3\right)
Tuhia anō te 5x^{2}+8x+3 hei \left(5x^{2}+3x\right)+\left(5x+3\right).
x\left(5x+3\right)+5x+3
Whakatauwehea atu x i te 5x^{2}+3x.
\left(5x+3\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 5x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{3}{5} x=-1
Hei kimi otinga whārite, me whakaoti te 5x+3=0 me te x+1=0.
5x^{2}+8x+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{8^{2}-4\times 5\times 3}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 8 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 5\times 3}}{2\times 5}
Pūrua 8.
x=\frac{-8±\sqrt{64-20\times 3}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-8±\sqrt{64-60}}{2\times 5}
Whakareatia -20 ki te 3.
x=\frac{-8±\sqrt{4}}{2\times 5}
Tāpiri 64 ki te -60.
x=\frac{-8±2}{2\times 5}
Tuhia te pūtakerua o te 4.
x=\frac{-8±2}{10}
Whakareatia 2 ki te 5.
x=-\frac{6}{10}
Nā, me whakaoti te whārite x=\frac{-8±2}{10} ina he tāpiri te ±. Tāpiri -8 ki te 2.
x=-\frac{3}{5}
Whakahekea te hautanga \frac{-6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{10}{10}
Nā, me whakaoti te whārite x=\frac{-8±2}{10} ina he tango te ±. Tango 2 mai i -8.
x=-1
Whakawehe -10 ki te 10.
x=-\frac{3}{5} x=-1
Kua oti te whārite te whakatau.
5x^{2}+8x+3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}+8x+3-3=-3
Me tango 3 mai i ngā taha e rua o te whārite.
5x^{2}+8x=-3
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
\frac{5x^{2}+8x}{5}=-\frac{3}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{8}{5}x=-\frac{3}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{8}{5}x+\left(\frac{4}{5}\right)^{2}=-\frac{3}{5}+\left(\frac{4}{5}\right)^{2}
Whakawehea te \frac{8}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{4}{5}. Nā, tāpiria te pūrua o te \frac{4}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{8}{5}x+\frac{16}{25}=-\frac{3}{5}+\frac{16}{25}
Pūruatia \frac{4}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{8}{5}x+\frac{16}{25}=\frac{1}{25}
Tāpiri -\frac{3}{5} ki te \frac{16}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{4}{5}\right)^{2}=\frac{1}{25}
Tauwehea x^{2}+\frac{8}{5}x+\frac{16}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{5}\right)^{2}}=\sqrt{\frac{1}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{4}{5}=\frac{1}{5} x+\frac{4}{5}=-\frac{1}{5}
Whakarūnātia.
x=-\frac{3}{5} x=-1
Me tango \frac{4}{5} mai i ngā taha e rua o te whārite.