Whakaoti mō x
x = \frac{\sqrt{209} - 3}{10} \approx 1.145683229
x=\frac{-\sqrt{209}-3}{10}\approx -1.745683229
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}+3x-10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\times 5\left(-10\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 3 mō b, me -10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 5\left(-10\right)}}{2\times 5}
Pūrua 3.
x=\frac{-3±\sqrt{9-20\left(-10\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-3±\sqrt{9+200}}{2\times 5}
Whakareatia -20 ki te -10.
x=\frac{-3±\sqrt{209}}{2\times 5}
Tāpiri 9 ki te 200.
x=\frac{-3±\sqrt{209}}{10}
Whakareatia 2 ki te 5.
x=\frac{\sqrt{209}-3}{10}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{209}}{10} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{209}.
x=\frac{-\sqrt{209}-3}{10}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{209}}{10} ina he tango te ±. Tango \sqrt{209} mai i -3.
x=\frac{\sqrt{209}-3}{10} x=\frac{-\sqrt{209}-3}{10}
Kua oti te whārite te whakatau.
5x^{2}+3x-10=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}+3x-10-\left(-10\right)=-\left(-10\right)
Me tāpiri 10 ki ngā taha e rua o te whārite.
5x^{2}+3x=-\left(-10\right)
Mā te tango i te -10 i a ia ake anō ka toe ko te 0.
5x^{2}+3x=10
Tango -10 mai i 0.
\frac{5x^{2}+3x}{5}=\frac{10}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{3}{5}x=\frac{10}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{3}{5}x=2
Whakawehe 10 ki te 5.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=2+\left(\frac{3}{10}\right)^{2}
Whakawehea te \frac{3}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{10}. Nā, tāpiria te pūrua o te \frac{3}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{5}x+\frac{9}{100}=2+\frac{9}{100}
Pūruatia \frac{3}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{209}{100}
Tāpiri 2 ki te \frac{9}{100}.
\left(x+\frac{3}{10}\right)^{2}=\frac{209}{100}
Tauwehea x^{2}+\frac{3}{5}x+\frac{9}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{\frac{209}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{10}=\frac{\sqrt{209}}{10} x+\frac{3}{10}=-\frac{\sqrt{209}}{10}
Whakarūnātia.
x=\frac{\sqrt{209}-3}{10} x=\frac{-\sqrt{209}-3}{10}
Me tango \frac{3}{10} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}