Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}+12x-7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{12^{2}-4\times 5\left(-7\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 12 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 5\left(-7\right)}}{2\times 5}
Pūrua 12.
x=\frac{-12±\sqrt{144-20\left(-7\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-12±\sqrt{144+140}}{2\times 5}
Whakareatia -20 ki te -7.
x=\frac{-12±\sqrt{284}}{2\times 5}
Tāpiri 144 ki te 140.
x=\frac{-12±2\sqrt{71}}{2\times 5}
Tuhia te pūtakerua o te 284.
x=\frac{-12±2\sqrt{71}}{10}
Whakareatia 2 ki te 5.
x=\frac{2\sqrt{71}-12}{10}
Nā, me whakaoti te whārite x=\frac{-12±2\sqrt{71}}{10} ina he tāpiri te ±. Tāpiri -12 ki te 2\sqrt{71}.
x=\frac{\sqrt{71}-6}{5}
Whakawehe -12+2\sqrt{71} ki te 10.
x=\frac{-2\sqrt{71}-12}{10}
Nā, me whakaoti te whārite x=\frac{-12±2\sqrt{71}}{10} ina he tango te ±. Tango 2\sqrt{71} mai i -12.
x=\frac{-\sqrt{71}-6}{5}
Whakawehe -12-2\sqrt{71} ki te 10.
x=\frac{\sqrt{71}-6}{5} x=\frac{-\sqrt{71}-6}{5}
Kua oti te whārite te whakatau.
5x^{2}+12x-7=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}+12x-7-\left(-7\right)=-\left(-7\right)
Me tāpiri 7 ki ngā taha e rua o te whārite.
5x^{2}+12x=-\left(-7\right)
Mā te tango i te -7 i a ia ake anō ka toe ko te 0.
5x^{2}+12x=7
Tango -7 mai i 0.
\frac{5x^{2}+12x}{5}=\frac{7}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{12}{5}x=\frac{7}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{12}{5}x+\left(\frac{6}{5}\right)^{2}=\frac{7}{5}+\left(\frac{6}{5}\right)^{2}
Whakawehea te \frac{12}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{6}{5}. Nā, tāpiria te pūrua o te \frac{6}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{12}{5}x+\frac{36}{25}=\frac{7}{5}+\frac{36}{25}
Pūruatia \frac{6}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{12}{5}x+\frac{36}{25}=\frac{71}{25}
Tāpiri \frac{7}{5} ki te \frac{36}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{6}{5}\right)^{2}=\frac{71}{25}
Tauwehea x^{2}+\frac{12}{5}x+\frac{36}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{5}\right)^{2}}=\sqrt{\frac{71}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{6}{5}=\frac{\sqrt{71}}{5} x+\frac{6}{5}=-\frac{\sqrt{71}}{5}
Whakarūnātia.
x=\frac{\sqrt{71}-6}{5} x=\frac{-\sqrt{71}-6}{5}
Me tango \frac{6}{5} mai i ngā taha e rua o te whārite.