Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}+10x-20=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-20\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 10 mō b, me -20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 5\left(-20\right)}}{2\times 5}
Pūrua 10.
x=\frac{-10±\sqrt{100-20\left(-20\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-10±\sqrt{100+400}}{2\times 5}
Whakareatia -20 ki te -20.
x=\frac{-10±\sqrt{500}}{2\times 5}
Tāpiri 100 ki te 400.
x=\frac{-10±10\sqrt{5}}{2\times 5}
Tuhia te pūtakerua o te 500.
x=\frac{-10±10\sqrt{5}}{10}
Whakareatia 2 ki te 5.
x=\frac{10\sqrt{5}-10}{10}
Nā, me whakaoti te whārite x=\frac{-10±10\sqrt{5}}{10} ina he tāpiri te ±. Tāpiri -10 ki te 10\sqrt{5}.
x=\sqrt{5}-1
Whakawehe -10+10\sqrt{5} ki te 10.
x=\frac{-10\sqrt{5}-10}{10}
Nā, me whakaoti te whārite x=\frac{-10±10\sqrt{5}}{10} ina he tango te ±. Tango 10\sqrt{5} mai i -10.
x=-\sqrt{5}-1
Whakawehe -10-10\sqrt{5} ki te 10.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Kua oti te whārite te whakatau.
5x^{2}+10x-20=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}+10x-20-\left(-20\right)=-\left(-20\right)
Me tāpiri 20 ki ngā taha e rua o te whārite.
5x^{2}+10x=-\left(-20\right)
Mā te tango i te -20 i a ia ake anō ka toe ko te 0.
5x^{2}+10x=20
Tango -20 mai i 0.
\frac{5x^{2}+10x}{5}=\frac{20}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{10}{5}x=\frac{20}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+2x=\frac{20}{5}
Whakawehe 10 ki te 5.
x^{2}+2x=4
Whakawehe 20 ki te 5.
x^{2}+2x+1^{2}=4+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=4+1
Pūrua 1.
x^{2}+2x+1=5
Tāpiri 4 ki te 1.
\left(x+1\right)^{2}=5
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{5} x+1=-\sqrt{5}
Whakarūnātia.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Me tango 1 mai i ngā taha e rua o te whārite.
5x^{2}+10x-20=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-20\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 10 mō b, me -20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 5\left(-20\right)}}{2\times 5}
Pūrua 10.
x=\frac{-10±\sqrt{100-20\left(-20\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-10±\sqrt{100+400}}{2\times 5}
Whakareatia -20 ki te -20.
x=\frac{-10±\sqrt{500}}{2\times 5}
Tāpiri 100 ki te 400.
x=\frac{-10±10\sqrt{5}}{2\times 5}
Tuhia te pūtakerua o te 500.
x=\frac{-10±10\sqrt{5}}{10}
Whakareatia 2 ki te 5.
x=\frac{10\sqrt{5}-10}{10}
Nā, me whakaoti te whārite x=\frac{-10±10\sqrt{5}}{10} ina he tāpiri te ±. Tāpiri -10 ki te 10\sqrt{5}.
x=\sqrt{5}-1
Whakawehe -10+10\sqrt{5} ki te 10.
x=\frac{-10\sqrt{5}-10}{10}
Nā, me whakaoti te whārite x=\frac{-10±10\sqrt{5}}{10} ina he tango te ±. Tango 10\sqrt{5} mai i -10.
x=-\sqrt{5}-1
Whakawehe -10-10\sqrt{5} ki te 10.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Kua oti te whārite te whakatau.
5x^{2}+10x-20=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}+10x-20-\left(-20\right)=-\left(-20\right)
Me tāpiri 20 ki ngā taha e rua o te whārite.
5x^{2}+10x=-\left(-20\right)
Mā te tango i te -20 i a ia ake anō ka toe ko te 0.
5x^{2}+10x=20
Tango -20 mai i 0.
\frac{5x^{2}+10x}{5}=\frac{20}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{10}{5}x=\frac{20}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+2x=\frac{20}{5}
Whakawehe 10 ki te 5.
x^{2}+2x=4
Whakawehe 20 ki te 5.
x^{2}+2x+1^{2}=4+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=4+1
Pūrua 1.
x^{2}+2x+1=5
Tāpiri 4 ki te 1.
\left(x+1\right)^{2}=5
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{5} x+1=-\sqrt{5}
Whakarūnātia.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Me tango 1 mai i ngā taha e rua o te whārite.