Whakaoti mō x
x=\frac{1}{5}=0.2
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}-11x=-2
Tangohia te 11x mai i ngā taha e rua.
5x^{2}-11x+2=0
Me tāpiri te 2 ki ngā taha e rua.
a+b=-11 ab=5\times 2=10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-10 -2,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 10.
-1-10=-11 -2-5=-7
Tātaihia te tapeke mō ia takirua.
a=-10 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(5x^{2}-10x\right)+\left(-x+2\right)
Tuhia anō te 5x^{2}-11x+2 hei \left(5x^{2}-10x\right)+\left(-x+2\right).
5x\left(x-2\right)-\left(x-2\right)
Tauwehea te 5x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-2\right)\left(5x-1\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=\frac{1}{5}
Hei kimi otinga whārite, me whakaoti te x-2=0 me te 5x-1=0.
5x^{2}-11x=-2
Tangohia te 11x mai i ngā taha e rua.
5x^{2}-11x+2=0
Me tāpiri te 2 ki ngā taha e rua.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 5\times 2}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -11 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 5\times 2}}{2\times 5}
Pūrua -11.
x=\frac{-\left(-11\right)±\sqrt{121-20\times 2}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-11\right)±\sqrt{121-40}}{2\times 5}
Whakareatia -20 ki te 2.
x=\frac{-\left(-11\right)±\sqrt{81}}{2\times 5}
Tāpiri 121 ki te -40.
x=\frac{-\left(-11\right)±9}{2\times 5}
Tuhia te pūtakerua o te 81.
x=\frac{11±9}{2\times 5}
Ko te tauaro o -11 ko 11.
x=\frac{11±9}{10}
Whakareatia 2 ki te 5.
x=\frac{20}{10}
Nā, me whakaoti te whārite x=\frac{11±9}{10} ina he tāpiri te ±. Tāpiri 11 ki te 9.
x=2
Whakawehe 20 ki te 10.
x=\frac{2}{10}
Nā, me whakaoti te whārite x=\frac{11±9}{10} ina he tango te ±. Tango 9 mai i 11.
x=\frac{1}{5}
Whakahekea te hautanga \frac{2}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=2 x=\frac{1}{5}
Kua oti te whārite te whakatau.
5x^{2}-11x=-2
Tangohia te 11x mai i ngā taha e rua.
\frac{5x^{2}-11x}{5}=-\frac{2}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}-\frac{11}{5}x=-\frac{2}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-\frac{11}{5}x+\left(-\frac{11}{10}\right)^{2}=-\frac{2}{5}+\left(-\frac{11}{10}\right)^{2}
Whakawehea te -\frac{11}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{10}. Nā, tāpiria te pūrua o te -\frac{11}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{11}{5}x+\frac{121}{100}=-\frac{2}{5}+\frac{121}{100}
Pūruatia -\frac{11}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{11}{5}x+\frac{121}{100}=\frac{81}{100}
Tāpiri -\frac{2}{5} ki te \frac{121}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{11}{10}\right)^{2}=\frac{81}{100}
Tauwehea x^{2}-\frac{11}{5}x+\frac{121}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{10}\right)^{2}}=\sqrt{\frac{81}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{10}=\frac{9}{10} x-\frac{11}{10}=-\frac{9}{10}
Whakarūnātia.
x=2 x=\frac{1}{5}
Me tāpiri \frac{11}{10} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}