Tauwehe
5\left(b-\frac{7-\sqrt{374}}{5}\right)\left(b-\frac{\sqrt{374}+7}{5}\right)
Aromātai
5b^{2}-14b-65
Pātaitai
Polynomial
5 { b }^{ 2 } -14b-65
Tohaina
Kua tāruatia ki te papatopenga
5b^{2}-14b-65=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
b=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 5\left(-65\right)}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-\left(-14\right)±\sqrt{196-4\times 5\left(-65\right)}}{2\times 5}
Pūrua -14.
b=\frac{-\left(-14\right)±\sqrt{196-20\left(-65\right)}}{2\times 5}
Whakareatia -4 ki te 5.
b=\frac{-\left(-14\right)±\sqrt{196+1300}}{2\times 5}
Whakareatia -20 ki te -65.
b=\frac{-\left(-14\right)±\sqrt{1496}}{2\times 5}
Tāpiri 196 ki te 1300.
b=\frac{-\left(-14\right)±2\sqrt{374}}{2\times 5}
Tuhia te pūtakerua o te 1496.
b=\frac{14±2\sqrt{374}}{2\times 5}
Ko te tauaro o -14 ko 14.
b=\frac{14±2\sqrt{374}}{10}
Whakareatia 2 ki te 5.
b=\frac{2\sqrt{374}+14}{10}
Nā, me whakaoti te whārite b=\frac{14±2\sqrt{374}}{10} ina he tāpiri te ±. Tāpiri 14 ki te 2\sqrt{374}.
b=\frac{\sqrt{374}+7}{5}
Whakawehe 14+2\sqrt{374} ki te 10.
b=\frac{14-2\sqrt{374}}{10}
Nā, me whakaoti te whārite b=\frac{14±2\sqrt{374}}{10} ina he tango te ±. Tango 2\sqrt{374} mai i 14.
b=\frac{7-\sqrt{374}}{5}
Whakawehe 14-2\sqrt{374} ki te 10.
5b^{2}-14b-65=5\left(b-\frac{\sqrt{374}+7}{5}\right)\left(b-\frac{7-\sqrt{374}}{5}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{7+\sqrt{374}}{5} mō te x_{1} me te \frac{7-\sqrt{374}}{5} mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}