Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
710-5\left(2\times 142+1\right)=-3\left(4\times 142+5\right)
Whakareatia te 5 ki te 142, ka 710.
710-5\left(284+1\right)=-3\left(4\times 142+5\right)
Whakareatia te 2 ki te 142, ka 284.
710-5\times 285=-3\left(4\times 142+5\right)
Tāpirihia te 284 ki te 1, ka 285.
710-1425=-3\left(4\times 142+5\right)
Whakareatia te 5 ki te 285, ka 1425.
-715=-3\left(4\times 142+5\right)
Tangohia te 1425 i te 710, ka -715.
-715=-3\left(568+5\right)
Whakareatia te 4 ki te 142, ka 568.
-715=-3\times 573
Tāpirihia te 568 ki te 5, ka 573.
-715=-1719
Whakareatia te -3 ki te 573, ka -1719.
\text{false}
Whakatauritea te -715 me te -1719.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}