Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5\sqrt{3}+2\times 3\sqrt{3}+\frac{1}{\sqrt{3}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
5\sqrt{3}+6\sqrt{3}+\frac{1}{\sqrt{3}}
Whakareatia te 2 ki te 3, ka 6.
11\sqrt{3}+\frac{1}{\sqrt{3}}
Pahekotia te 5\sqrt{3} me 6\sqrt{3}, ka 11\sqrt{3}.
11\sqrt{3}+\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
11\sqrt{3}+\frac{\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{34}{3}\sqrt{3}
Pahekotia te 11\sqrt{3} me \frac{\sqrt{3}}{3}, ka \frac{34}{3}\sqrt{3}.