Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

15\sqrt{\frac{1\times 3+1}{3}}\sqrt{54}
Whakareatia te 3 ki te 5, ka 15.
15\sqrt{\frac{3+1}{3}}\sqrt{54}
Whakareatia te 1 ki te 3, ka 3.
15\sqrt{\frac{4}{3}}\sqrt{54}
Tāpirihia te 3 ki te 1, ka 4.
15\times \frac{\sqrt{4}}{\sqrt{3}}\sqrt{54}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{4}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{4}}{\sqrt{3}}.
15\times \frac{2}{\sqrt{3}}\sqrt{54}
Tātaitia te pūtakerua o 4 kia tae ki 2.
15\times \frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{54}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
15\times \frac{2\sqrt{3}}{3}\sqrt{54}
Ko te pūrua o \sqrt{3} ko 3.
15\times \frac{2\sqrt{3}}{3}\times 3\sqrt{6}
Tauwehea te 54=3^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 6} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{6}. Tuhia te pūtakerua o te 3^{2}.
45\times \frac{2\sqrt{3}}{3}\sqrt{6}
Whakareatia te 15 ki te 3, ka 45.
15\times 2\sqrt{3}\sqrt{6}
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 45 me te 3.
30\sqrt{3}\sqrt{6}
Whakareatia te 15 ki te 2, ka 30.
30\sqrt{3}\sqrt{3}\sqrt{2}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
30\times 3\sqrt{2}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
90\sqrt{2}
Whakareatia te 30 ki te 3, ka 90.