Aromātai
\frac{5\sqrt{43565}}{3}-\frac{364816}{81}\approx -4156.030728648
Tauwehe
\frac{135 \sqrt{43565} - 364816}{81} = -4156.030728648114
Tohaina
Kua tāruatia ki te papatopenga
5\sqrt{\frac{43565}{9}}-\left(\frac{6040}{90}\right)^{2}
Whakahekea te hautanga \frac{435650}{90} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
5\times \frac{\sqrt{43565}}{\sqrt{9}}-\left(\frac{6040}{90}\right)^{2}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{43565}{9}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{43565}}{\sqrt{9}}.
5\times \frac{\sqrt{43565}}{3}-\left(\frac{6040}{90}\right)^{2}
Tātaitia te pūtakerua o 9 kia tae ki 3.
\frac{5\sqrt{43565}}{3}-\left(\frac{6040}{90}\right)^{2}
Tuhia te 5\times \frac{\sqrt{43565}}{3} hei hautanga kotahi.
\frac{5\sqrt{43565}}{3}-\left(\frac{604}{9}\right)^{2}
Whakahekea te hautanga \frac{6040}{90} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{5\sqrt{43565}}{3}-\frac{364816}{81}
Tātaihia te \frac{604}{9} mā te pū o 2, kia riro ko \frac{364816}{81}.
\frac{27\times 5\sqrt{43565}}{81}-\frac{364816}{81}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 81 ko 81. Whakareatia \frac{5\sqrt{43565}}{3} ki te \frac{27}{27}.
\frac{27\times 5\sqrt{43565}-364816}{81}
Tā te mea he rite te tauraro o \frac{27\times 5\sqrt{43565}}{81} me \frac{364816}{81}, me tango rāua mā te tango i ō raua taurunga.
\frac{135\sqrt{43565}-364816}{81}
Mahia ngā whakarea i roto o 27\times 5\sqrt{43565}-364816.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}