Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5\times 5\sqrt{3}-2\sqrt{108}+5\sqrt{12}
Tauwehea te 75=5^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 3} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{3}. Tuhia te pūtakerua o te 5^{2}.
25\sqrt{3}-2\sqrt{108}+5\sqrt{12}
Whakareatia te 5 ki te 5, ka 25.
25\sqrt{3}-2\times 6\sqrt{3}+5\sqrt{12}
Tauwehea te 108=6^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 3} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{3}. Tuhia te pūtakerua o te 6^{2}.
25\sqrt{3}-12\sqrt{3}+5\sqrt{12}
Whakareatia te -2 ki te 6, ka -12.
13\sqrt{3}+5\sqrt{12}
Pahekotia te 25\sqrt{3} me -12\sqrt{3}, ka 13\sqrt{3}.
13\sqrt{3}+5\times 2\sqrt{3}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
13\sqrt{3}+10\sqrt{3}
Whakareatia te 5 ki te 2, ka 10.
23\sqrt{3}
Pahekotia te 13\sqrt{3} me 10\sqrt{3}, ka 23\sqrt{3}.