Aromātai
20\sqrt{2}-2\sqrt{5}\approx 23.812135292
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
5 \sqrt { 18 } + \sqrt { 50 } - \sqrt { 125 } + 3 \sqrt { 5 }
Tohaina
Kua tāruatia ki te papatopenga
5\times 3\sqrt{2}+\sqrt{50}-\sqrt{125}+3\sqrt{5}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
15\sqrt{2}+\sqrt{50}-\sqrt{125}+3\sqrt{5}
Whakareatia te 5 ki te 3, ka 15.
15\sqrt{2}+5\sqrt{2}-\sqrt{125}+3\sqrt{5}
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
20\sqrt{2}-\sqrt{125}+3\sqrt{5}
Pahekotia te 15\sqrt{2} me 5\sqrt{2}, ka 20\sqrt{2}.
20\sqrt{2}-5\sqrt{5}+3\sqrt{5}
Tauwehea te 125=5^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 5} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{5}. Tuhia te pūtakerua o te 5^{2}.
20\sqrt{2}-2\sqrt{5}
Pahekotia te -5\sqrt{5} me 3\sqrt{5}, ka -2\sqrt{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}