Aromātai
\frac{40\sqrt{3}}{3}\approx 23.094010768
Tohaina
Kua tāruatia ki te papatopenga
5\sqrt{\frac{625-7^{2}}{27}}
Tātaihia te 25 mā te pū o 2, kia riro ko 625.
5\sqrt{\frac{625-49}{27}}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
5\sqrt{\frac{576}{27}}
Tangohia te 49 i te 625, ka 576.
5\sqrt{\frac{64}{3}}
Whakahekea te hautanga \frac{576}{27} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
5\times \frac{\sqrt{64}}{\sqrt{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{64}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{64}}{\sqrt{3}}.
5\times \frac{8}{\sqrt{3}}
Tātaitia te pūtakerua o 64 kia tae ki 8.
5\times \frac{8\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{8}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
5\times \frac{8\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{5\times 8\sqrt{3}}{3}
Tuhia te 5\times \frac{8\sqrt{3}}{3} hei hautanga kotahi.
\frac{40\sqrt{3}}{3}
Whakareatia te 5 ki te 8, ka 40.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}