Aromātai
\left(1-t\right)\left(t-12\right)
Whakaroha
-t^{2}+13t-12
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
5 \left( 3t-4 \right) - { t }^{ 2 } +2-2 \left( t-3 \right)
Tohaina
Kua tāruatia ki te papatopenga
15t-20-t^{2}+2-2\left(t-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 3t-4.
15t-18-t^{2}-2\left(t-3\right)
Tāpirihia te -20 ki te 2, ka -18.
15t-18-t^{2}-2t+6
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te t-3.
13t-18-t^{2}+6
Pahekotia te 15t me -2t, ka 13t.
13t-12-t^{2}
Tāpirihia te -18 ki te 6, ka -12.
15t-20-t^{2}+2-2\left(t-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 3t-4.
15t-18-t^{2}-2\left(t-3\right)
Tāpirihia te -20 ki te 2, ka -18.
15t-18-t^{2}-2t+6
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te t-3.
13t-18-t^{2}+6
Pahekotia te 15t me -2t, ka 13t.
13t-12-t^{2}
Tāpirihia te -18 ki te 6, ka -12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}