Aromātai
\frac{8936}{15}\approx 595.733333333
Tauwehe
\frac{2 ^ {3} \cdot 1117}{3 \cdot 5} = 595\frac{11}{15} = 595.7333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{15+1}{3}-\frac{40\times 3+1}{3}+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
Whakareatia te 5 ki te 3, ka 15.
\frac{16}{3}-\frac{40\times 3+1}{3}+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
Tāpirihia te 15 ki te 1, ka 16.
\frac{16}{3}-\frac{120+1}{3}+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
Whakareatia te 40 ki te 3, ka 120.
\frac{16}{3}-\frac{121}{3}+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
Tāpirihia te 120 ki te 1, ka 121.
\frac{16-121}{3}+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
Tā te mea he rite te tauraro o \frac{16}{3} me \frac{121}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{-105}{3}+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
Tangohia te 121 i te 16, ka -105.
-35+\frac{625\times 3+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
Whakawehea te -105 ki te 3, kia riro ko -35.
-35+\frac{1875+1}{3}+15\times \frac{27}{25}\times \frac{1}{3}
Whakareatia te 625 ki te 3, ka 1875.
-35+\frac{1876}{3}+15\times \frac{27}{25}\times \frac{1}{3}
Tāpirihia te 1875 ki te 1, ka 1876.
-\frac{105}{3}+\frac{1876}{3}+15\times \frac{27}{25}\times \frac{1}{3}
Me tahuri te -35 ki te hautau -\frac{105}{3}.
\frac{-105+1876}{3}+15\times \frac{27}{25}\times \frac{1}{3}
Tā te mea he rite te tauraro o -\frac{105}{3} me \frac{1876}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1771}{3}+15\times \frac{27}{25}\times \frac{1}{3}
Tāpirihia te -105 ki te 1876, ka 1771.
\frac{1771}{3}+\frac{15\times 27}{25}\times \frac{1}{3}
Tuhia te 15\times \frac{27}{25} hei hautanga kotahi.
\frac{1771}{3}+\frac{405}{25}\times \frac{1}{3}
Whakareatia te 15 ki te 27, ka 405.
\frac{1771}{3}+\frac{81}{5}\times \frac{1}{3}
Whakahekea te hautanga \frac{405}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1771}{3}+\frac{81\times 1}{5\times 3}
Me whakarea te \frac{81}{5} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1771}{3}+\frac{81}{15}
Mahia ngā whakarea i roto i te hautanga \frac{81\times 1}{5\times 3}.
\frac{1771}{3}+\frac{27}{5}
Whakahekea te hautanga \frac{81}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{8855}{15}+\frac{81}{15}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{1771}{3} me \frac{27}{5} ki te hautau me te tautūnga 15.
\frac{8855+81}{15}
Tā te mea he rite te tauraro o \frac{8855}{15} me \frac{81}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8936}{15}
Tāpirihia te 8855 ki te 81, ka 8936.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}