Aromātai
\frac{125}{12}\approx 10.416666667
Tauwehe
\frac{5 ^ {3}}{2 ^ {2} \cdot 3} = 10\frac{5}{12} = 10.416666666666666
Tohaina
Kua tāruatia ki te papatopenga
\frac{30+5}{6}-\frac{9\times 3+2}{3}+\frac{17\times 4+3}{4}-\frac{3\times 2+1}{2}
Whakareatia te 5 ki te 6, ka 30.
\frac{35}{6}-\frac{9\times 3+2}{3}+\frac{17\times 4+3}{4}-\frac{3\times 2+1}{2}
Tāpirihia te 30 ki te 5, ka 35.
\frac{35}{6}-\frac{27+2}{3}+\frac{17\times 4+3}{4}-\frac{3\times 2+1}{2}
Whakareatia te 9 ki te 3, ka 27.
\frac{35}{6}-\frac{29}{3}+\frac{17\times 4+3}{4}-\frac{3\times 2+1}{2}
Tāpirihia te 27 ki te 2, ka 29.
\frac{35}{6}-\frac{58}{6}+\frac{17\times 4+3}{4}-\frac{3\times 2+1}{2}
Ko te maha noa iti rawa atu o 6 me 3 ko 6. Me tahuri \frac{35}{6} me \frac{29}{3} ki te hautau me te tautūnga 6.
\frac{35-58}{6}+\frac{17\times 4+3}{4}-\frac{3\times 2+1}{2}
Tā te mea he rite te tauraro o \frac{35}{6} me \frac{58}{6}, me tango rāua mā te tango i ō raua taurunga.
-\frac{23}{6}+\frac{17\times 4+3}{4}-\frac{3\times 2+1}{2}
Tangohia te 58 i te 35, ka -23.
-\frac{23}{6}+\frac{68+3}{4}-\frac{3\times 2+1}{2}
Whakareatia te 17 ki te 4, ka 68.
-\frac{23}{6}+\frac{71}{4}-\frac{3\times 2+1}{2}
Tāpirihia te 68 ki te 3, ka 71.
-\frac{46}{12}+\frac{213}{12}-\frac{3\times 2+1}{2}
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri -\frac{23}{6} me \frac{71}{4} ki te hautau me te tautūnga 12.
\frac{-46+213}{12}-\frac{3\times 2+1}{2}
Tā te mea he rite te tauraro o -\frac{46}{12} me \frac{213}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{167}{12}-\frac{3\times 2+1}{2}
Tāpirihia te -46 ki te 213, ka 167.
\frac{167}{12}-\frac{6+1}{2}
Whakareatia te 3 ki te 2, ka 6.
\frac{167}{12}-\frac{7}{2}
Tāpirihia te 6 ki te 1, ka 7.
\frac{167}{12}-\frac{42}{12}
Ko te maha noa iti rawa atu o 12 me 2 ko 12. Me tahuri \frac{167}{12} me \frac{7}{2} ki te hautau me te tautūnga 12.
\frac{167-42}{12}
Tā te mea he rite te tauraro o \frac{167}{12} me \frac{42}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{125}{12}
Tangohia te 42 i te 167, ka 125.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}