Aromātai
\frac{32}{15}\approx 2.133333333
Tauwehe
\frac{2 ^ {5}}{3 \cdot 5} = 2\frac{2}{15} = 2.1333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{15+2}{3}-\frac{1\times 5+1}{5}-\frac{2\times 3+1}{3}
Whakareatia te 5 ki te 3, ka 15.
\frac{17}{3}-\frac{1\times 5+1}{5}-\frac{2\times 3+1}{3}
Tāpirihia te 15 ki te 2, ka 17.
\frac{17}{3}-\frac{5+1}{5}-\frac{2\times 3+1}{3}
Whakareatia te 1 ki te 5, ka 5.
\frac{17}{3}-\frac{6}{5}-\frac{2\times 3+1}{3}
Tāpirihia te 5 ki te 1, ka 6.
\frac{85}{15}-\frac{18}{15}-\frac{2\times 3+1}{3}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{17}{3} me \frac{6}{5} ki te hautau me te tautūnga 15.
\frac{85-18}{15}-\frac{2\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{85}{15} me \frac{18}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{67}{15}-\frac{2\times 3+1}{3}
Tangohia te 18 i te 85, ka 67.
\frac{67}{15}-\frac{6+1}{3}
Whakareatia te 2 ki te 3, ka 6.
\frac{67}{15}-\frac{7}{3}
Tāpirihia te 6 ki te 1, ka 7.
\frac{67}{15}-\frac{35}{15}
Ko te maha noa iti rawa atu o 15 me 3 ko 15. Me tahuri \frac{67}{15} me \frac{7}{3} ki te hautau me te tautūnga 15.
\frac{67-35}{15}
Tā te mea he rite te tauraro o \frac{67}{15} me \frac{35}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{32}{15}
Tangohia te 35 i te 67, ka 32.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}