Aromātai
\frac{221}{90}\approx 2.455555556
Tauwehe
\frac{13 \cdot 17}{2 \cdot 5 \cdot 3 ^ {2}} = 2\frac{41}{90} = 2.4555555555555557
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
5 \frac { 2 } { 3 } \times 0.4 \div 1.02 + 0.28 \div 1.2
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{15+2}{3}\times 0.4}{1.02}+\frac{0.28}{1.2}
Whakareatia te 5 ki te 3, ka 15.
\frac{\frac{17}{3}\times 0.4}{1.02}+\frac{0.28}{1.2}
Tāpirihia te 15 ki te 2, ka 17.
\frac{\frac{17}{3}\times \frac{2}{5}}{1.02}+\frac{0.28}{1.2}
Me tahuri ki tau ā-ira 0.4 ki te hautau \frac{4}{10}. Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{17\times 2}{3\times 5}}{1.02}+\frac{0.28}{1.2}
Me whakarea te \frac{17}{3} ki te \frac{2}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{34}{15}}{1.02}+\frac{0.28}{1.2}
Mahia ngā whakarea i roto i te hautanga \frac{17\times 2}{3\times 5}.
\frac{34}{15\times 1.02}+\frac{0.28}{1.2}
Tuhia te \frac{\frac{34}{15}}{1.02} hei hautanga kotahi.
\frac{34}{15.3}+\frac{0.28}{1.2}
Whakareatia te 15 ki te 1.02, ka 15.3.
\frac{340}{153}+\frac{0.28}{1.2}
Whakarohaina te \frac{34}{15.3} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{20}{9}+\frac{0.28}{1.2}
Whakahekea te hautanga \frac{340}{153} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 17.
\frac{20}{9}+\frac{28}{120}
Whakarohaina te \frac{0.28}{1.2} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{20}{9}+\frac{7}{30}
Whakahekea te hautanga \frac{28}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{200}{90}+\frac{21}{90}
Ko te maha noa iti rawa atu o 9 me 30 ko 90. Me tahuri \frac{20}{9} me \frac{7}{30} ki te hautau me te tautūnga 90.
\frac{200+21}{90}
Tā te mea he rite te tauraro o \frac{200}{90} me \frac{21}{90}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{221}{90}
Tāpirihia te 200 ki te 21, ka 221.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}