Aromātai
1.4
Tauwehe
\frac{7}{5} = 1\frac{2}{5} = 1.4
Tohaina
Kua tāruatia ki te papatopenga
\frac{35+1}{7}\times 2.8-13
Whakareatia te 5 ki te 7, ka 35.
\frac{36}{7}\times 2.8-13
Tāpirihia te 35 ki te 1, ka 36.
\frac{36}{7}\times \frac{14}{5}-13
Me tahuri ki tau ā-ira 2.8 ki te hautau \frac{28}{10}. Whakahekea te hautanga \frac{28}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{36\times 14}{7\times 5}-13
Me whakarea te \frac{36}{7} ki te \frac{14}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{504}{35}-13
Mahia ngā whakarea i roto i te hautanga \frac{36\times 14}{7\times 5}.
\frac{72}{5}-13
Whakahekea te hautanga \frac{504}{35} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{72}{5}-\frac{65}{5}
Me tahuri te 13 ki te hautau \frac{65}{5}.
\frac{72-65}{5}
Tā te mea he rite te tauraro o \frac{72}{5} me \frac{65}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{7}{5}
Tangohia te 65 i te 72, ka 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}