Aromātai
-\frac{28}{5}=-5.6
Tauwehe
-\frac{28}{5} = -5\frac{3}{5} = -5.6
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{5\times 3+1}{3}\times 7}{\left(-\frac{3\times 3+1}{3}\right)\times 2}
Whakawehe \frac{\frac{5\times 3+1}{3}}{-\frac{3\times 3+1}{3}} ki te \frac{2}{7} mā te whakarea \frac{\frac{5\times 3+1}{3}}{-\frac{3\times 3+1}{3}} ki te tau huripoki o \frac{2}{7}.
\frac{\frac{15+1}{3}\times 7}{\left(-\frac{3\times 3+1}{3}\right)\times 2}
Whakareatia te 5 ki te 3, ka 15.
\frac{\frac{16}{3}\times 7}{\left(-\frac{3\times 3+1}{3}\right)\times 2}
Tāpirihia te 15 ki te 1, ka 16.
\frac{\frac{16\times 7}{3}}{\left(-\frac{3\times 3+1}{3}\right)\times 2}
Tuhia te \frac{16}{3}\times 7 hei hautanga kotahi.
\frac{\frac{112}{3}}{\left(-\frac{3\times 3+1}{3}\right)\times 2}
Whakareatia te 16 ki te 7, ka 112.
\frac{\frac{112}{3}}{\left(-\frac{9+1}{3}\right)\times 2}
Whakareatia te 3 ki te 3, ka 9.
\frac{\frac{112}{3}}{-\frac{10}{3}\times 2}
Tāpirihia te 9 ki te 1, ka 10.
\frac{\frac{112}{3}}{\frac{-10\times 2}{3}}
Tuhia te -\frac{10}{3}\times 2 hei hautanga kotahi.
\frac{\frac{112}{3}}{\frac{-20}{3}}
Whakareatia te -10 ki te 2, ka -20.
\frac{\frac{112}{3}}{-\frac{20}{3}}
Ka taea te hautanga \frac{-20}{3} te tuhi anō ko -\frac{20}{3} mā te tango i te tohu tōraro.
\frac{112}{3}\left(-\frac{3}{20}\right)
Whakawehe \frac{112}{3} ki te -\frac{20}{3} mā te whakarea \frac{112}{3} ki te tau huripoki o -\frac{20}{3}.
\frac{112\left(-3\right)}{3\times 20}
Me whakarea te \frac{112}{3} ki te -\frac{3}{20} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-336}{60}
Mahia ngā whakarea i roto i te hautanga \frac{112\left(-3\right)}{3\times 20}.
-\frac{28}{5}
Whakahekea te hautanga \frac{-336}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}