Whakaoti mō x
x = \frac{35}{17} = 2\frac{1}{17} \approx 2.058823529
Graph
Tohaina
Kua tāruatia ki te papatopenga
15-\left(8x-5\right)+6-7x+3=7x-\left(5x+9-3\right)
Whakareatia te 5 ki te 3, ka 15.
15-8x-\left(-5\right)+6-7x+3=7x-\left(5x+9-3\right)
Hei kimi i te tauaro o 8x-5, kimihia te tauaro o ia taurangi.
15-8x+5+6-7x+3=7x-\left(5x+9-3\right)
Ko te tauaro o -5 ko 5.
20-8x+6-7x+3=7x-\left(5x+9-3\right)
Tāpirihia te 15 ki te 5, ka 20.
26-8x-7x+3=7x-\left(5x+9-3\right)
Tāpirihia te 20 ki te 6, ka 26.
26-15x+3=7x-\left(5x+9-3\right)
Pahekotia te -8x me -7x, ka -15x.
29-15x=7x-\left(5x+9-3\right)
Tāpirihia te 26 ki te 3, ka 29.
29-15x=7x-\left(5x+6\right)
Tangohia te 3 i te 9, ka 6.
29-15x=7x-5x-6
Hei kimi i te tauaro o 5x+6, kimihia te tauaro o ia taurangi.
29-15x=2x-6
Pahekotia te 7x me -5x, ka 2x.
29-15x-2x=-6
Tangohia te 2x mai i ngā taha e rua.
29-17x=-6
Pahekotia te -15x me -2x, ka -17x.
-17x=-6-29
Tangohia te 29 mai i ngā taha e rua.
-17x=-35
Tangohia te 29 i te -6, ka -35.
x=\frac{-35}{-17}
Whakawehea ngā taha e rua ki te -17.
x=\frac{35}{17}
Ka taea te hautanga \frac{-35}{-17} te whakamāmā ki te \frac{35}{17} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}