Aromātai
-\frac{23}{15}\approx -1.533333333
Tauwehe
-\frac{23}{15} = -1\frac{8}{15} = -1.5333333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{5\left(-2\right)}{3}+1.8
Tuhia te 5\left(-\frac{2}{3}\right) hei hautanga kotahi.
\frac{-10}{3}+1.8
Whakareatia te 5 ki te -2, ka -10.
-\frac{10}{3}+1.8
Ka taea te hautanga \frac{-10}{3} te tuhi anō ko -\frac{10}{3} mā te tango i te tohu tōraro.
-\frac{10}{3}+\frac{9}{5}
Me tahuri ki tau ā-ira 1.8 ki te hautau \frac{18}{10}. Whakahekea te hautanga \frac{18}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{50}{15}+\frac{27}{15}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri -\frac{10}{3} me \frac{9}{5} ki te hautau me te tautūnga 15.
\frac{-50+27}{15}
Tā te mea he rite te tauraro o -\frac{50}{15} me \frac{27}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{23}{15}
Tāpirihia te -50 ki te 27, ka -23.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}