Aromātai
\frac{953}{18}\approx 52.944444444
Tauwehe
\frac{953}{2 \cdot 3 ^ {2}} = 52\frac{17}{18} = 52.94444444444444
Tohaina
Kua tāruatia ki te papatopenga
25-\frac{\frac{4}{9}}{8}+28
Whakareatia te 5 ki te 5, ka 25.
25-\frac{4}{9\times 8}+28
Tuhia te \frac{\frac{4}{9}}{8} hei hautanga kotahi.
25-\frac{4}{72}+28
Whakareatia te 9 ki te 8, ka 72.
25-\frac{1}{18}+28
Whakahekea te hautanga \frac{4}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{450}{18}-\frac{1}{18}+28
Me tahuri te 25 ki te hautau \frac{450}{18}.
\frac{450-1}{18}+28
Tā te mea he rite te tauraro o \frac{450}{18} me \frac{1}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{449}{18}+28
Tangohia te 1 i te 450, ka 449.
\frac{449}{18}+\frac{504}{18}
Me tahuri te 28 ki te hautau \frac{504}{18}.
\frac{449+504}{18}
Tā te mea he rite te tauraro o \frac{449}{18} me \frac{504}{18}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{953}{18}
Tāpirihia te 449 ki te 504, ka 953.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}