Whakaoti mō x
x=25
Graph
Tohaina
Kua tāruatia ki te papatopenga
100+\left(x-5\right)\times 4=\left(5\times 20+4x\right)\times 0.9
Whakareatia te 5 ki te 20, ka 100.
100+4x-20=\left(5\times 20+4x\right)\times 0.9
Whakamahia te āhuatanga tohatoha hei whakarea te x-5 ki te 4.
80+4x=\left(5\times 20+4x\right)\times 0.9
Tangohia te 20 i te 100, ka 80.
80+4x=\left(100+4x\right)\times 0.9
Whakareatia te 5 ki te 20, ka 100.
80+4x=90+3.6x
Whakamahia te āhuatanga tohatoha hei whakarea te 100+4x ki te 0.9.
80+4x-3.6x=90
Tangohia te 3.6x mai i ngā taha e rua.
80+0.4x=90
Pahekotia te 4x me -3.6x, ka 0.4x.
0.4x=90-80
Tangohia te 80 mai i ngā taha e rua.
0.4x=10
Tangohia te 80 i te 90, ka 10.
x=\frac{10}{0.4}
Whakawehea ngā taha e rua ki te 0.4.
x=\frac{100}{4}
Whakarohaina te \frac{10}{0.4} mā te whakarea i te taurunga me te tauraro ki te 10.
x=25
Whakawehea te 100 ki te 4, kia riro ko 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}