Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{125}\times 5^{2x+1}=25
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
5^{2x+1}=3125
Me whakarea ngā taha e rua ki te 125.
\log(5^{2x+1})=\log(3125)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(2x+1\right)\log(5)=\log(3125)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
2x+1=\frac{\log(3125)}{\log(5)}
Whakawehea ngā taha e rua ki te \log(5).
2x+1=\log_{5}\left(3125\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
2x=5-1
Me tango 1 mai i ngā taha e rua o te whārite.
x=\frac{4}{2}
Whakawehea ngā taha e rua ki te 2.