Whakaoti mō x
x=\frac{1}{5}=0.2
x=-\frac{1}{5}=-0.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
6103515625x^{2}-5^{12}=0
Tātaihia te 5 mā te pū o 14, kia riro ko 6103515625.
6103515625x^{2}-244140625=0
Tātaihia te 5 mā te pū o 12, kia riro ko 244140625.
25x^{2}-1=0
Whakawehea ngā taha e rua ki te 244140625.
\left(5x-1\right)\left(5x+1\right)=0
Whakaarohia te 25x^{2}-1. Tuhia anō te 25x^{2}-1 hei \left(5x\right)^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{5} x=-\frac{1}{5}
Hei kimi otinga whārite, me whakaoti te 5x-1=0 me te 5x+1=0.
6103515625x^{2}-5^{12}=0
Tātaihia te 5 mā te pū o 14, kia riro ko 6103515625.
6103515625x^{2}-244140625=0
Tātaihia te 5 mā te pū o 12, kia riro ko 244140625.
6103515625x^{2}=244140625
Me tāpiri te 244140625 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{244140625}{6103515625}
Whakawehea ngā taha e rua ki te 6103515625.
x^{2}=\frac{1}{25}
Whakahekea te hautanga \frac{244140625}{6103515625} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 244140625.
x=\frac{1}{5} x=-\frac{1}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
6103515625x^{2}-5^{12}=0
Tātaihia te 5 mā te pū o 14, kia riro ko 6103515625.
6103515625x^{2}-244140625=0
Tātaihia te 5 mā te pū o 12, kia riro ko 244140625.
x=\frac{0±\sqrt{0^{2}-4\times 6103515625\left(-244140625\right)}}{2\times 6103515625}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6103515625 mō a, 0 mō b, me -244140625 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6103515625\left(-244140625\right)}}{2\times 6103515625}
Pūrua 0.
x=\frac{0±\sqrt{-24414062500\left(-244140625\right)}}{2\times 6103515625}
Whakareatia -4 ki te 6103515625.
x=\frac{0±\sqrt{5960464477539062500}}{2\times 6103515625}
Whakareatia -24414062500 ki te -244140625.
x=\frac{0±2441406250}{2\times 6103515625}
Tuhia te pūtakerua o te 5960464477539062500.
x=\frac{0±2441406250}{12207031250}
Whakareatia 2 ki te 6103515625.
x=\frac{1}{5}
Nā, me whakaoti te whārite x=\frac{0±2441406250}{12207031250} ina he tāpiri te ±. Whakahekea te hautanga \frac{2441406250}{12207031250} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2441406250.
x=-\frac{1}{5}
Nā, me whakaoti te whārite x=\frac{0±2441406250}{12207031250} ina he tango te ±. Whakahekea te hautanga \frac{-2441406250}{12207031250} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2441406250.
x=\frac{1}{5} x=-\frac{1}{5}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}