Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}-8=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y^{2}=5+8
Me tāpiri te 8 ki ngā taha e rua.
y^{2}=13
Tāpirihia te 5 ki te 8, ka 13.
y=\sqrt{13} y=-\sqrt{13}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y^{2}-8=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y^{2}-8-5=0
Tangohia te 5 mai i ngā taha e rua.
y^{2}-13=0
Tangohia te 5 i te -8, ka -13.
y=\frac{0±\sqrt{0^{2}-4\left(-13\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -13 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-13\right)}}{2}
Pūrua 0.
y=\frac{0±\sqrt{52}}{2}
Whakareatia -4 ki te -13.
y=\frac{0±2\sqrt{13}}{2}
Tuhia te pūtakerua o te 52.
y=\sqrt{13}
Nā, me whakaoti te whārite y=\frac{0±2\sqrt{13}}{2} ina he tāpiri te ±.
y=-\sqrt{13}
Nā, me whakaoti te whārite y=\frac{0±2\sqrt{13}}{2} ina he tango te ±.
y=\sqrt{13} y=-\sqrt{13}
Kua oti te whārite te whakatau.