Whakaoti mō t (complex solution)
t=\sqrt{2}-1\approx 0.414213562
t=-\left(\sqrt{2}+1\right)\approx -2.414213562
Whakaoti mō t
t=\sqrt{2}-1\approx 0.414213562
t=-\sqrt{2}-1\approx -2.414213562
Tohaina
Kua tāruatia ki te papatopenga
10t+5t^{2}=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
10t+5t^{2}-5=0
Tangohia te 5 mai i ngā taha e rua.
5t^{2}+10t-5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-10±\sqrt{10^{2}-4\times 5\left(-5\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 10 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-10±\sqrt{100-4\times 5\left(-5\right)}}{2\times 5}
Pūrua 10.
t=\frac{-10±\sqrt{100-20\left(-5\right)}}{2\times 5}
Whakareatia -4 ki te 5.
t=\frac{-10±\sqrt{100+100}}{2\times 5}
Whakareatia -20 ki te -5.
t=\frac{-10±\sqrt{200}}{2\times 5}
Tāpiri 100 ki te 100.
t=\frac{-10±10\sqrt{2}}{2\times 5}
Tuhia te pūtakerua o te 200.
t=\frac{-10±10\sqrt{2}}{10}
Whakareatia 2 ki te 5.
t=\frac{10\sqrt{2}-10}{10}
Nā, me whakaoti te whārite t=\frac{-10±10\sqrt{2}}{10} ina he tāpiri te ±. Tāpiri -10 ki te 10\sqrt{2}.
t=\sqrt{2}-1
Whakawehe -10+10\sqrt{2} ki te 10.
t=\frac{-10\sqrt{2}-10}{10}
Nā, me whakaoti te whārite t=\frac{-10±10\sqrt{2}}{10} ina he tango te ±. Tango 10\sqrt{2} mai i -10.
t=-\sqrt{2}-1
Whakawehe -10-10\sqrt{2} ki te 10.
t=\sqrt{2}-1 t=-\sqrt{2}-1
Kua oti te whārite te whakatau.
10t+5t^{2}=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
5t^{2}+10t=5
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{5t^{2}+10t}{5}=\frac{5}{5}
Whakawehea ngā taha e rua ki te 5.
t^{2}+\frac{10}{5}t=\frac{5}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
t^{2}+2t=\frac{5}{5}
Whakawehe 10 ki te 5.
t^{2}+2t=1
Whakawehe 5 ki te 5.
t^{2}+2t+1^{2}=1+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+2t+1=1+1
Pūrua 1.
t^{2}+2t+1=2
Tāpiri 1 ki te 1.
\left(t+1\right)^{2}=2
Tauwehea t^{2}+2t+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+1\right)^{2}}=\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+1=\sqrt{2} t+1=-\sqrt{2}
Whakarūnātia.
t=\sqrt{2}-1 t=-\sqrt{2}-1
Me tango 1 mai i ngā taha e rua o te whārite.
10t+5t^{2}=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
10t+5t^{2}-5=0
Tangohia te 5 mai i ngā taha e rua.
5t^{2}+10t-5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-10±\sqrt{10^{2}-4\times 5\left(-5\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 10 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-10±\sqrt{100-4\times 5\left(-5\right)}}{2\times 5}
Pūrua 10.
t=\frac{-10±\sqrt{100-20\left(-5\right)}}{2\times 5}
Whakareatia -4 ki te 5.
t=\frac{-10±\sqrt{100+100}}{2\times 5}
Whakareatia -20 ki te -5.
t=\frac{-10±\sqrt{200}}{2\times 5}
Tāpiri 100 ki te 100.
t=\frac{-10±10\sqrt{2}}{2\times 5}
Tuhia te pūtakerua o te 200.
t=\frac{-10±10\sqrt{2}}{10}
Whakareatia 2 ki te 5.
t=\frac{10\sqrt{2}-10}{10}
Nā, me whakaoti te whārite t=\frac{-10±10\sqrt{2}}{10} ina he tāpiri te ±. Tāpiri -10 ki te 10\sqrt{2}.
t=\sqrt{2}-1
Whakawehe -10+10\sqrt{2} ki te 10.
t=\frac{-10\sqrt{2}-10}{10}
Nā, me whakaoti te whārite t=\frac{-10±10\sqrt{2}}{10} ina he tango te ±. Tango 10\sqrt{2} mai i -10.
t=-\sqrt{2}-1
Whakawehe -10-10\sqrt{2} ki te 10.
t=\sqrt{2}-1 t=-\sqrt{2}-1
Kua oti te whārite te whakatau.
10t+5t^{2}=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
5t^{2}+10t=5
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{5t^{2}+10t}{5}=\frac{5}{5}
Whakawehea ngā taha e rua ki te 5.
t^{2}+\frac{10}{5}t=\frac{5}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
t^{2}+2t=\frac{5}{5}
Whakawehe 10 ki te 5.
t^{2}+2t=1
Whakawehe 5 ki te 5.
t^{2}+2t+1^{2}=1+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+2t+1=1+1
Pūrua 1.
t^{2}+2t+1=2
Tāpiri 1 ki te 1.
\left(t+1\right)^{2}=2
Tauwehea t^{2}+2t+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+1\right)^{2}}=\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+1=\sqrt{2} t+1=-\sqrt{2}
Whakarūnātia.
t=\sqrt{2}-1 t=-\sqrt{2}-1
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}