Whakaoti mō x
x = \frac{\sqrt{18121} + 139}{2} \approx 136.807131866
x = \frac{139 - \sqrt{18121}}{2} \approx 2.192868134
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{60}x^{2}+\frac{139}{60}x=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{1}{60}x^{2}+\frac{139}{60}x-5=0
Tangohia te 5 mai i ngā taha e rua.
x=\frac{-\frac{139}{60}±\sqrt{\left(\frac{139}{60}\right)^{2}-4\left(-\frac{1}{60}\right)\left(-5\right)}}{2\left(-\frac{1}{60}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{60} mō a, \frac{139}{60} mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{139}{60}±\sqrt{\frac{19321}{3600}-4\left(-\frac{1}{60}\right)\left(-5\right)}}{2\left(-\frac{1}{60}\right)}
Pūruatia \frac{139}{60} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{139}{60}±\sqrt{\frac{19321}{3600}+\frac{1}{15}\left(-5\right)}}{2\left(-\frac{1}{60}\right)}
Whakareatia -4 ki te -\frac{1}{60}.
x=\frac{-\frac{139}{60}±\sqrt{\frac{19321}{3600}-\frac{1}{3}}}{2\left(-\frac{1}{60}\right)}
Whakareatia \frac{1}{15} ki te -5.
x=\frac{-\frac{139}{60}±\sqrt{\frac{18121}{3600}}}{2\left(-\frac{1}{60}\right)}
Tāpiri \frac{19321}{3600} ki te -\frac{1}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\frac{139}{60}±\frac{\sqrt{18121}}{60}}{2\left(-\frac{1}{60}\right)}
Tuhia te pūtakerua o te \frac{18121}{3600}.
x=\frac{-\frac{139}{60}±\frac{\sqrt{18121}}{60}}{-\frac{1}{30}}
Whakareatia 2 ki te -\frac{1}{60}.
x=\frac{\sqrt{18121}-139}{-\frac{1}{30}\times 60}
Nā, me whakaoti te whārite x=\frac{-\frac{139}{60}±\frac{\sqrt{18121}}{60}}{-\frac{1}{30}} ina he tāpiri te ±. Tāpiri -\frac{139}{60} ki te \frac{\sqrt{18121}}{60}.
x=\frac{139-\sqrt{18121}}{2}
Whakawehe \frac{-139+\sqrt{18121}}{60} ki te -\frac{1}{30} mā te whakarea \frac{-139+\sqrt{18121}}{60} ki te tau huripoki o -\frac{1}{30}.
x=\frac{-\sqrt{18121}-139}{-\frac{1}{30}\times 60}
Nā, me whakaoti te whārite x=\frac{-\frac{139}{60}±\frac{\sqrt{18121}}{60}}{-\frac{1}{30}} ina he tango te ±. Tango \frac{\sqrt{18121}}{60} mai i -\frac{139}{60}.
x=\frac{\sqrt{18121}+139}{2}
Whakawehe \frac{-139-\sqrt{18121}}{60} ki te -\frac{1}{30} mā te whakarea \frac{-139-\sqrt{18121}}{60} ki te tau huripoki o -\frac{1}{30}.
x=\frac{139-\sqrt{18121}}{2} x=\frac{\sqrt{18121}+139}{2}
Kua oti te whārite te whakatau.
-\frac{1}{60}x^{2}+\frac{139}{60}x=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{-\frac{1}{60}x^{2}+\frac{139}{60}x}{-\frac{1}{60}}=\frac{5}{-\frac{1}{60}}
Me whakarea ngā taha e rua ki te -60.
x^{2}+\frac{\frac{139}{60}}{-\frac{1}{60}}x=\frac{5}{-\frac{1}{60}}
Mā te whakawehe ki te -\frac{1}{60} ka wetekia te whakareanga ki te -\frac{1}{60}.
x^{2}-139x=\frac{5}{-\frac{1}{60}}
Whakawehe \frac{139}{60} ki te -\frac{1}{60} mā te whakarea \frac{139}{60} ki te tau huripoki o -\frac{1}{60}.
x^{2}-139x=-300
Whakawehe 5 ki te -\frac{1}{60} mā te whakarea 5 ki te tau huripoki o -\frac{1}{60}.
x^{2}-139x+\left(-\frac{139}{2}\right)^{2}=-300+\left(-\frac{139}{2}\right)^{2}
Whakawehea te -139, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{139}{2}. Nā, tāpiria te pūrua o te -\frac{139}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-139x+\frac{19321}{4}=-300+\frac{19321}{4}
Pūruatia -\frac{139}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-139x+\frac{19321}{4}=\frac{18121}{4}
Tāpiri -300 ki te \frac{19321}{4}.
\left(x-\frac{139}{2}\right)^{2}=\frac{18121}{4}
Tauwehea x^{2}-139x+\frac{19321}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{139}{2}\right)^{2}}=\sqrt{\frac{18121}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{139}{2}=\frac{\sqrt{18121}}{2} x-\frac{139}{2}=-\frac{\sqrt{18121}}{2}
Whakarūnātia.
x=\frac{\sqrt{18121}+139}{2} x=\frac{139-\sqrt{18121}}{2}
Me tāpiri \frac{139}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}