Whakaoti mō A
A=31249
Tohaina
Kua tāruatia ki te papatopenga
5=1.6\times \frac{1}{10000}\left(1+A\right)
Tātaihia te 10 mā te pū o -4, kia riro ko \frac{1}{10000}.
5=\frac{1}{6250}\left(1+A\right)
Whakareatia te 1.6 ki te \frac{1}{10000}, ka \frac{1}{6250}.
5=\frac{1}{6250}+\frac{1}{6250}A
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{6250} ki te 1+A.
\frac{1}{6250}+\frac{1}{6250}A=5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{6250}A=5-\frac{1}{6250}
Tangohia te \frac{1}{6250} mai i ngā taha e rua.
\frac{1}{6250}A=\frac{31249}{6250}
Tangohia te \frac{1}{6250} i te 5, ka \frac{31249}{6250}.
A=\frac{31249}{6250}\times 6250
Me whakarea ngā taha e rua ki te 6250, te tau utu o \frac{1}{6250}.
A=31249
Whakareatia te \frac{31249}{6250} ki te 6250, ka 31249.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}